0000000000718934

AUTHOR

Kathrin Butzbach

Mechanisms of DNA damage by photoexcited 9-methyl-β-carbolines

It has been well documented that β-carboline alkaloids, particularly the 9-methyl derivatives, are efficient photosensitizers. However, structure–activity relationships are missing and the photochemical mechanisms involved in the DNA photodamage still remain unknown. In the present work, we examined the capability of three 9-methyl-β-carbolines (9-methyl-norharmane, 9-methyl-harmane and 9-methylharmine) to induce DNA damage upon UVA excitation at physiological pH. The type and extent of the damage was analyzed together with the photophysical and binding properties of the β-carboline derivatives investigated. The results indicate that even at neutral pH most of the DNA damage is generated fr…

research product

Albumin-Folate Conjugates for Drug-targeting in Photodynamic Therapy.

Photodynamic therapy (PDT) is based on the cytotoxicity of photosensitizers in the presence of light. Increased selectivity and effectivity of the treatment is expected if a specific uptake of the photosensitizers into the target cells, often tumor cells, can be achieved. An attractive transporter for that purpose is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe the synthesis and photobiological characterization of polar β-carboline derivatives as photosensitizers covalently linked to folate-tagged albumin as the carrier system. The particles were taken up by KB (human carcinoma) cells within …

research product

Photogenotoxicity of folic acid.

Folic acid (FA), also named vitamin B9, is an essential cofactor for the synthesis of DNA bases and other biomolecules after bioactivation by dihydrofolate reductase (DHFR). FA is photoreactive and has been shown to generate DNA modifications when irradiated with UVA (360 nm) in the presence of DNA under cell-free conditions. To investigate the relevance of this reaction for cells and tissues, we irradiated three different cell lines (KB nasopharyngeal carcinoma cells, HaCaT keratinocytes, and a melanoma cell line) in the presence of FA and quantified cytotoxicity and DNA damage generation. The results indicate that FA is phototoxic and photogenotoxic by two different mechanisms. First, ext…

research product