0000000000718969
AUTHOR
Aliz Simon
New experimental molecular stopping cross section data of Al2O3, for heavy ions
Abstract Molecular stopping cross section data of Al2O3, for heavy ions of 12C, 16O, 28Si, 35Cl, 79Br within the energy range of 0.01–1.0 MeV/nucleon were measured. Both direct transmission and bulk analysis methods were applied. Stopping cross sections were calculated both with the SRIM and MSTAR codes. Evaluation and intercomparison of the new data with the calculated and previously measured ones are reported in this paper.
Determination of molecular stopping cross section of 12C, 16O, 28Si, 35Cl, 58Ni, 79Br, and 127I in silicon nitride
Abstract Silicon nitride is a technologically important material in a range of applications due to a combination of important properties. Ion beam analysis techniques, and in particular, heavy ion elastic recoil detection analysis can be used to determine the stoichiometry of silicon nitride films, which often deviates from the ideal Si3N4, as well as the content of impurities such as hydrogen, even in the presence of other materials or in a matrix containing heavier elements. Accurate quantification of IBA results depends on the basic data used in the data analysis. Quantitative depth profiling relies on the knowledge of the stopping power cross sections of the materials studied for the io…
Influence of surface topography on depth profiles obtained by Rutherford backscattering spectrometry
A method for determining correct depth profiles from samples with rough surfaces is presented. The method combines Rutherford backscattering spectrometry with atomic force microscopy. The topographical information obtained by atomic force microscopy is used to calculate the effect of the surface roughness on the backscattering spectrum. As an example, annealed Au/ZnSe heterostructures are studied. Gold grains were observed on the surfaces of the annealed samples. The annealing also caused diffusion of gold into the ZnSe. Backscattering spectra of the samples were measured with a 2 MeV 4He+ ion beam. A scanning nuclear microprobe was used to verify the results by measuring backscattering fro…