0000000000719031

AUTHOR

Ljupco Kocarev

showing 2 related works from this author

Security of public key cryptosystems based on Chebyshev Polynomials

2004

Chebyshev polynomials have been recently proposed for designing public-key systems. Indeed, they enjoy some nice chaotic properties, which seem to be suitable for use in Cryptography. Moreover, they satisfy a semi-group property, which makes possible implementing a trapdoor mechanism. In this paper we study a public key cryptosystem based on such polynomials, which provides both encryption and digital signature. The cryptosystem works on real numbers and is quite efficient. Unfortunately, from our analysis it comes up that it is not secure. We describe an attack which permits to recover the corresponding plaintext from a given ciphertext. The same attack can be applied to produce forgeries …

FOS: Computer and information sciencesPlaintext-aware encryptionTheoretical computer scienceComputer Science - Cryptography and SecurityCramer–Shoup cryptosystemData_CODINGANDINFORMATIONTHEORYDeterministic encryptionHybrid cryptosystemCryptosystemElectrical and Electronic EngineeringSemantic securityThreshold cryptosystemCryptography and Security (cs.CR)Goldwasser–Micali cryptosystemMathematics
researchProduct

Tracking Control of Networked Multi-Agent Systems Under New Characterizations of Impulses and Its Applications in Robotic Systems

2016

This paper examines the problem of tracking control of networked multi-agent systems with multiple delays and impulsive effects, whose results are applied to mechanical robotic systems. Four kinds of impulsive effects are taken into account: 1) both the strengths of impulsive effects and the number of nodes injected with impulses are time dependent; 2) the strengths of impulsive effects occur according to certain probabilities and the number of nodes under impulsive control is time varying; 3) the strengths of impulses are time varying, whereas the number of nodes with impulses takes place according to certain probabilities; 4) both the strengths of impulses and the number of nodes with imp…

0209 industrial biotechnologyEngineeringTracking controlControl (management)02 engineering and technologyTracking (particle physics)robotic systems020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringmulti-agent systemsElectrical and Electronic EngineeringRobot kinematicsbusiness.industryStochastic processMulti-agent systemtime-delaysComputer Science Applications1707 Computer Vision and Pattern RecognitionControl engineeringRobotic systemsLeader-following consensusControl and Systems EngineeringControl systemLeader-following consensus; multi-agent systems; robotic systems; time-delays; Tracking control; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic Engineering020201 artificial intelligence & image processingbusinessIEEE Transactions on Industrial Electronics
researchProduct