0000000000719090

AUTHOR

Ivica Vilibić

Glycymeris pilosa (Bivalvia) - A high-potential geochemical archive of the environmental variability in the Adriatic Sea.

Due to its outstanding longevity (decades), the shallow-water bivalve Glycmeris pilosa represents a prime target for sclerochronological research in the Mediterranean Sea. In the present study, we analyzed the microgrowth patterns and the stable carbon (δ13Cshell) and oxygen (δ18Oshell) isotopes of the outer shell layer of live-collected G. pilosa specimens from four different sites along the Croatian coast, middle Adriatic Sea. Combined analysis of shell growth patterns and temporally aligned δ18Oshell data indicated that the main growing season lasts from April to December, with fastest growth rates occurring during July and August when seawater temperatures exceeded 22 °C. Slow growth in…

research product

Coastal high-frequency radars in the Mediterranean – Part 1: Status of operations and a framework for future development

Due to the semi-enclosed nature of the Mediterranean Sea, natural disasters and anthropogenic activities impose stronger pressures on its coastal ecosystems than in any other sea of the world. With the aim of responding adequately to science priorities and societal challenges, littoral waters must be effectively monitored with high-frequency radar (HFR) systems. This land-based remote sensing technology can provide, in near-real time, fine-resolution maps of the surface circulation over broad coastal areas, along with reliable directional wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network and the future roadmap for orches…

research product

Coastal HF radars in the Mediterranean: Applications in support of science priorities and societal needs

Abstract. The Mediterranean Sea is a prominent climate change hot spot, being their socio-economically vital coastal areas the most vulnerable targets for maritime safety, diverse met-ocean hazards and marine pollution. Providing an unprecedented spatial and temporal resolution at wide coastal areas, High-frequency radars (HFRs) have been steadily gaining recognition as an effective land-based remote sensing technology for a continuous monitoring of the surface circulation, increasingly waves and occasionally winds. HFR measurements have boosted the thorough scientific knowledge of coastal processes, also fostering a broad range of applications, which has promoted their integration in the C…

research product

Coastal high-frequency radars in the Mediterranean - Part 2: Applications in support of science priorities and societal needs

The Mediterranean Sea is a prominent climate-change hot spot, with many socioeconomically vital coastal areas being the most vulnerable targets for maritime safety, diverse met-ocean hazards and marine pollution. Providing an unprecedented spatial and temporal resolution at wide coastal areas, high-frequency radars (HFRs) have been steadily gaining recognition as an effective land-based remote sensing technology for continuous monitoring of the surface circulation, increasingly waves and occasionally winds. HFR measurements have boosted the thorough scientific knowledge of coastal processes, also fostering a broad range of applications, which has promoted their integration in coastal ocean …

research product