0000000000721904

AUTHOR

Thomas W. L. Norman

showing 2 related works from this author

Approachability in Population Games

2014

This paper reframes approachability theory within the context of population games. Thus, whilst one player aims at driving her average payoff to a predefined set, her opponent is not malevolent but rather extracted randomly from a population of individuals with given distribution on actions. First, convergence conditions are revisited based on the common prior on the population distribution, and we define the notion of \emph{1st-moment approachability}. Second, we develop a model of two coupled partial differential equations (PDEs) in the spirit of mean-field game theory: one describing the best-response of every player given the population distribution (this is a \emph{Hamilton-Jacobi-Bell…

Statistics and Probabilityeducation.field_of_studyComputer Science::Computer Science and Game TheoryMEAN-FIELD GAMESComputer scienceApproachabilityREGRETApplied MathematicsPopulationStochastic gameRegretContext (language use)91A13ApproachabilityEVOLUTIONComplete informationOptimization and Control (math.OC)Modeling and SimulationBest responseFOS: MathematicseducationMathematical economicsGame theoryMathematics - Optimization and Controlpopulation games
researchProduct

Population Games with Vector Payoff and Approachability

2016

This paper studies population games with vector payoffs. It provides a new perspective on approachability based on mean-field game theory. The model involves a Hamilton-Jacobi-Bellman equation which describes the best-response of every player given the population distribution and an advection equation, capturing the macroscopic evolution of average payoffs if every player plays its best response.

Computer Science::Computer Science and Game Theoryeducation.field_of_studyDistribution (number theory)Computer scienceStochastic gamePopulationMathematicsofComputing_NUMERICALANALYSISComputingMilieux_PERSONALCOMPUTINGTheoryofComputation_GENERALApproachabilityStrategyBest responseRepeated gameeducationGame theoryMathematical economics
researchProduct