0000000000721934
AUTHOR
Gordon W. F. Drake
Isotope shift measurements in the 2s1/2→ 2p3/2transition of Be+and extraction of the nuclear charge radii for7, 10, 11Be
International audience; shift measurements in the 2s 1/2 → 2p 3/2 transition of Be + and extraction of the nuclear charge radii for 7, 10, 11 Be Abstract. We have performed isotope shift measurements in the 2s 1/2 → 2p 3/2 transition of Be + ions using advanced collinear laser spectroscopy with two counterpropagating laser beams. Measurements involving a frequency comb for laser stabilization and absolute frequency determination allowed us to determine the isotope shifts with an accuracy of 2 MHz. From the isotope shifts between 9 Be and 7, 10, 11 Be, high-accuracy mass shift calculations and the charge radius of the reference isotope 9 Be we determined nuclear charge radii for the isotopes…
Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination
Changes in the mean-square nuclear charge radii along the lithium isotopic chain were determined using a combination of precise isotope shift measurements and theoretical atomic structure calculations. Nuclear charge radii of light elements are of high interest due to the appearance of the nuclear halo phenomenon in this region of the nuclear chart. During the past years we have developed a new laser spectroscopic approach to determine the charge radii of lithium isotopes which combines high sensitivity, speed, and accuracy to measure the extremely small field shift of an 8 ms lifetime isotope with production rates on the order of only 10,000 atoms/s. The method was applied to all bound iso…
Ionization energy ofLi6,7determined by triple-resonance laser spectroscopy
Rydberg level energies for $^{7}\mathrm{Li}$ were measured using triple-resonance laser excitation, followed by drifted field ionization. In addition to the principal $n\phantom{\rule{0.2em}{0ex}}^{2}P$ series, weak Stark mixing from residual electric fields allowed observation of $n\phantom{\rule{0.2em}{0ex}}^{2}S$ and hydrogenic Stark manifold series at higher $n$. Limit analyses for the series yield the spectroscopic ionization energy ${E}_{I}(^{7}\mathrm{Li})=43\phantom{\rule{0.2em}{0ex}}487.159\phantom{\rule{0.2em}{0ex}}40(18)\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$. The $^{6,7}\mathrm{Li}$ isotope shift (IS) was measured in selected $n\phantom{\rule{0.2em}{0ex}}^{2}…