0000000000722566

AUTHOR

Hanene Belkahla

Coupling tumor necrosis factor‐related apoptosis‐inducing ligand to iron oxide nanoparticles increases its apoptotic activity on HCT116 and HepG2 malignant cells: effect of magnetic core size

International audience; Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been considered as a potential anticancer agent owing to its selectivity for malignant cells. However, its clinical use remains limited because of its poor efficacy. Attempts to increase its antitumor activity include, among others, its functionalization by nanoparticles (NPs). In the present study, TRAIL was grafted onto magnetic spinel iron oxide NPs of defined core size, 10 and 100 nm on average, to see whether the size of the resulting nanovectors, NV10 and NV100, respectively, might affect TRAIL efficacy and selectivity. Apoptosis induced by NV10 and NV100 was higher than by TRAIL alone in both …

research product

TRAIL acts synergistically with iron oxide nanocluster-mediated magneto- and photothermia

International audience; Targeting TRAIL (Tumor necrosis factor (TNF)-Related Apoptosis-Inducing Ligand) receptors for cancer therapy remains challenging due to tumor cell resistance and poor preparations of TRAIL or its derivatives. Herein, to optimize its therapeutic use, TRAIL was grafted onto iron oxide nanoclusters (NCs) with the aim of increasing its pro-apoptotic potential through nanoparticle-mediated magnetic hyperthermia (MHT) or photothermia (PT). Methods: The nanovector, NC@TRAIL, was characterized in terms of size, grafting efficiency, and potential for MHT and PT. The therapeutic function was assessed on a TRAIL-resistant breast cancer cell line, MDA-MB-231, wild type (WT) or T…

research product

Grafting TRAIL through Either Amino or Carboxylic Groups onto Maghemite Nanoparticles: Influence on Pro-Apoptotic Efficiency

International audience; Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF cytokine superfamily. TRAIL is able to induce apoptosis through engagement of its death receptors DR4 and DR5 in a wide variety of tumor cells while sparing vital normal cells. This makes it a promising agent for cancer therapy. Here, we present two different ways of covalently grafting TRAIL onto maghemite nanoparticles (NPs): (a) by using carboxylic acid groups of the protein to graft it onto maghemite NPs previously functionalized with amino groups, and (b) by using the amino functions of the protein to graft it onto NPs functionalized with carboxylic acid groups. The two …

research product