0000000000722719

AUTHOR

Farid Salazar

0000-0002-4007-6136

Nuclear geometry at high energy from exclusive vector meson production

We show that when saturation effects are included one obtains a good description of the exclusive $\mathrm{J}/\psi$ production spectra in ultra peripheral lead-lead collisions as recently measured by the ALICE Collaboration at the LHC. As exclusive spectra are sensitive to the spatial distribution of nuclear matter at small Bjorken-$x$, this implies that gluon saturation effects modify the impact parameter profile of the target as we move towards small $x$. In addition to saturation effects, we find a preference for larger nuclear strong-interaction radii compared to the typical charge radius. We demonstrate the role of finite photon transverse momentum and the interference between the case…

research product

Gluon imaging using azimuthal correlations in diffractive scattering at the Electron-Ion Collider

We study coherent diffractive photon and vector meson production in electron-proton and electron-nucleus collisions within the Color Glass Condensate effective field theory. We show that electron-photon and electron-vector meson azimuthal angle correlations are sensitive to non-trivial spatial correlations in the gluon distribution of the target, and perform explicit calculations using spatially dependent McLerran-Venugopalan initial color charge configurations coupled to the numerical solution of small $x$ JIMWLK evolution equations. We compute the cross-section differentially in $Q^2$ and $|t|$ and find sizeable anisotropies in the electron-photon and electron-$\mathrm{J}/��$ azimuthal co…

research product

The importance of kinematic twists and genuine saturation effects in dijet production at the Electron-Ion Collider

We compute the differential yield for quark anti-quark dijet production in high-energy electron-proton and electron-nucleus collisions at small $x$ as a function of the relative momentum $\boldsymbol{P}_\perp$ and momentum imbalance $\boldsymbol{k}_\perp$ of the dijet system for different photon virtualities $Q^2$, and study the elliptic and quadrangular anisotropies in the relative angle between $\boldsymbol{P}_\perp$ and $\boldsymbol{k}_\perp$. We review and extend the analysis in [1], which compared the results of the Color Glass Condensate (CGC) with those obtained using the transverse momentum dependent (TMD) framework. In particular, we include in our comparison the improved TMD (ITMD…

research product

Multigluon Correlations and Evidence of Saturation from Dijet Measurements at an Electron-Ion Collider.

We study inclusive and diffractive dijet production in electron-proton and electron-nucleus collisions within the Color Glass Condensate effective field theory. We compute dijet cross sections differentially in both mean dijet transverse momentum $\mathbf{P}$ and recoil momentum $\mathbf{\Delta}$, as well as the anisotropy in the relative angle between $\mathbf{P}$ and $\mathbf{\Delta}$. We use the nonlinear Gaussian approximation to compute multiparticle correlators for general small $x$ kinematics, employing running coupling Balitsky-Kovchegov evolution to determine the dipole amplitude at small $x$. Our results cover a much larger kinematic range than accessible in previous computations …

research product