0000000000722862
AUTHOR
P. Keränen
Underground multimuon experiment in the Pyhäsalmi mine
An experiment to observe simultaneous, multiple muon events originating from extensive air showers is under preparation. The experiment will be situated in shallow depths in the Pyhasalmi mine in Finland, where the existing free caverns will be used. The aim is to cover an area of about 200 - 300 m(2). The detection of the multimuon events is motivated by partly unknown composition of the primary cosmic rays in the energy region of 10(15) - 10(16) eV, i.e. the 'knee' region. A prototype detector is under construction and is expected to be running at the spring 2005.
Underground cosmic-ray experiment EMMA
A new cosmic-ray experiment is under construction in the Pyhasalmi mine, Finland. It aims to study the chemical composition of cosmic rays at and above the knee region. The array, called EMMA, will cover approximately 150 m2 of detector area at the depth of 85 metres ( ∼ 240 mwe ). It is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The full-size array is expected to be ready by the end of 2007. A partial-size array (one third of the full size) is planned to record data already at the first quarter of 2007. The array is also expected to be capable of measuring such high-multiplicity muon bundles as was …
EMMA - A New Underground Cosmic-Ray Experiment
A new type of cosmic-ray experiment is under construction in the Pyh\"asalmi mine in the underground laboratory of the University of Oulu, Finland. It aims to study the composition of cosmic rays at and above the knee region. The experiment, called EMMA, will cover approximately 150 square-metres of detector area. The array is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The full-size detector is expected to run by the end of 2007.
Effects of degenerate sterile neutrinos on the supernova neutrino flux
We consider the possibility that there exist sterile neutrinos which are closely degenerate in mass with the active neutrinos and mixed with them. We investigate the effects of this kind of active-sterile neutrino mixing on the composition of supernova neutrino flux at the Earth. If an adiabatic MSW-transition between active and sterile neutrinos takes place, it could dramatically diminish the electron neutrino flux.
EMMA – a new underground cosmic-ray experiment
An experiment observing underground muons originating from cosmic-ray air showers is under preparation in the Pyhasalmi mine, Finland. The aim is to cover an area of about 200-300 m(2), and the detector setup is capable of measuring the muon multiplicity and their lateral distribution. The detector is placed at a depth of about 85 m (corresponding about 240 m w.e.), which gives a threshold energy of muons of about 45 GeV. The detection of the multimuon events is motivated by partly unknown composition of the primary cosmic rays in the energy region of 10(15)-10(16) eV, i.e., the knee region. In addition, by measuring only the higher energy muons of the air shower, the lowest energy muons be…
Sterile neutrino signals from supernovae
We investigate the effects of a mixing of active and sterile neutrinos on the ratios of supernova electron neutrino flux ($F_e$) and antineutrino flux ($F_{\bar e}$) to the total flux of the other neutrino and antineutrino flavours ($F_a$). We assume that the heaviest (in the normal hierarchy) Standard Model neutrino $\nu_3$ mixes with a sterile neutrino resulting in a pair of mass eigenstates with a small mass gap. Using the density matrix formalism we solve numerically the the evolution of neutrino states in the envelope of a supernova and determine the flux ratios $F_e/F_a$ and $F_{\bar{e}}/F_a$ as a function of the active-sterile mixing angle and for the experimentally allowed range of …
Landau-Zener problem in a three-level neutrino system with non-linear time dependence
We consider the level-crossing problem in a three-level system with non-linearly time-varying Hamiltonian (time-dependence $t^{-3}$). We study the validity of the so-called independent crossing approximation in the Landau-Zener model by making comparison with results obtained numerically in density matrix approach. We also demonstrate the failure of the so-called "nearest zero" approximation of the Landau-Zener level-crossing probability integral.
Ultra–High‐Energy Cosmic Rays from Hypothetical Quark Novae
We explore acceleration of ions in the Quark Nova (QN) scenario, where a neutron star experiences an explosive phase transition into a quark star (born in the propeller regime). In this picture, two cosmic ray components are isolated: one related to the randomized pulsar wind and the other to the propelled wind, both boosted by the ultra-relativistic Quark Nova shock. The latter component acquires energies $10^{15} {\rm eV} 10^{18.6}$ eV. The composition is dominated by ions present in the pulsar wind in the energy range above $10^{18.6}$ eV, while at energies below $10^{18}$ eV the propelled ejecta, consisting of the fall-back neutron star crust material from the explosion, is the dominant…
Effects of sterile neutrinos on the ultrahigh-energy cosmic neutrino flux
We investigate the effect of sterile neutrinos that are nearly degenerate with active ones on the flux of ultrahigh-energy cosmic ray neutrinos at earth. This offers a way to probe neutrino oscillations in the mass-squared range (10^{-16} eV^2 < ��m^2 < 10^{-11} eV^2) which maybe hard to detect by any other means. Taking into account the present experimental uncertainties of the active-active mixing angles and by allowing any values for the active-sterile mixing angles we find that the ratio of the electron and muon neutrino fluxes may change by -40 % to 70 % in comparison with the ratio in the absence of active-sterile mixing.