0000000000724692

AUTHOR

Amin Moazami

A broadband multifocal metalens in the terahertz frequency range

Abstract Metasurfaces, the 2D form of metamaterials with their ability in phase, amplitude and polarization manipulation are widely used in designing optical devices. Efforts to find proper photonic components in the terahertz (THz) range of frequency lead us to adopt metasurfaces as their constituent elements. Here, we conceived a broadband THz lens with an adjustable number and arrangement of focal points. To have a full control over the lens functionality, we used a metasurface with the capability of simultaneously modulating the amplitude and phase of the incident wave. C-shaped ring resonators (CSRRs) with different geometry and orientation capable of simultaneously manipulating phase …

research product

Amplitude modulation technique for designing metalenses with apodized and enhanced resolution focal spots

Abstract In this paper we show that engineering both phase and amplitude of the scattered light can be employed in designing metalenses with either higher resolution or apodized focal spots. C-shaped split-ring micro-resonators (CSRRs) with different geometrical parameters are selected to have a full control of amplitude and phase. While phase engineering is necessary for light focusing, amplitude modulation of the scattered wave can be applied to characterize the focal point properties such as resolution gain and sidelobe level. We show that both axial and transverse resolution improvement or apodization is possible in the far-field region by applying proper amplitude function. Amplitude m…

research product

Metalenses with high-NA, enhanced resolution and apodization

Dielectric microlenses employed in imaging and focusing for optoelectronics are currently prospects to be substituted by metalenses showing an extraordinary optical performance within notably reduced volumes. Here we present some proposals to achieve an enhanced resolution in metallodielectric metasurface-based lenses established on either efficient arrangements with high numerical aperture or spatial filtering enabling to surpass the limit of resolution derived by the Rayleigh criterion.

research product