0000000000724697

AUTHOR

Peter Luger

showing 8 related works from this author

Approaching an experimental electron density model of the biologically active trans ‐epoxysuccinyl amide group—Substituent effects vs. crystal packing

2017

The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us…

chemistry.chemical_classificationElectron densitybiology010405 organic chemistryChemistryCarboxylic acidOrganic ChemistryIntermolecular forceSubstituentActive siteContext (language use)010402 general chemistry01 natural sciences0104 chemical sciencesCrystallographychemistry.chemical_compoundAmideIntramolecular forcebiology.proteinPhysical and Theoretical ChemistryJournal of Physical Organic Chemistry
researchProduct

Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)

2015

After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.

010405 organic chemistryChemistryIntermolecular forceGeneral ChemistryCrystal structureBiochemical Activity010402 general chemistry01 natural sciencesCysteine proteaseCatalysisProtease inhibitor (biology)0104 chemical sciencesCrystallographyLoxistatinComplementarity (molecular biology)Materials ChemistrymedicineMoleculemedicine.drugNew Journal of Chemistry
researchProduct

The Significance of Ionic Bonding in Sulfur Dioxide: Bond Orders from X-ray Diffraction Data

2012

A novel refinement technique for X‐ray diffraction data has been employed to derive S-O bond orders in sulfur dioxide experimentally. The results show that ionic S-O bonding dominates over hypervalency.

DiffractionSulfonylchemistry.chemical_classificationMolecular StructureChemistryInorganic chemistryHypervalent moleculeIonic bondingGeneral ChemistryBond orderCatalysischemistry.chemical_compoundX-Ray DiffractionX-ray crystallography540 ChemistryHumansSulfur DioxideMoleculePhysical chemistry570 Life sciences; biologySulfur dioxide
researchProduct

Die Bedeutung ionischer Bindungsanteile in Schwefeldioxid - Bindungsordnungen aus Röntgenbeugungsdaten

2012

Materials scienceGeneral MedicineAngewandte Chemie
researchProduct

CCDC 1498221: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

(2S3S)-3-carbamoyl-2-ethoxycarbonyloxiraneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 977799: Experimental Crystal Structure Determination

2015

Related Article: Ming W. Shi, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Thomas C. Schmidt, Peter Luger, Stefan Mebs, Birger Dittrich, Yu-Sheng Chen, Joanna M. Bąk, Dylan Jayatilaka, Charles S. Bond, Michael J. Turner, Scott G. Stewart, Mark A. Spackman and Simon Grabowsky|2015|New J.Chem.|39|1628|doi:10.1039/C4NJ01503G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-((4-methyl-1-((3-methylbutyl)amino)-1-oxopentan-2-yl)carbamoyl)oxirane-2-carboxylic acidExperimental 3D Coordinates
researchProduct

CCDC 1498219: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersethyl (2R3R)-3-((S)-1-((benzyloxy)carbonyl)phenylalanyl)oxirane-2-carboxylateExperimental 3D Coordinates
researchProduct

CCDC 1498220: Experimental Crystal Structure Determination

2017

Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683

Space GroupCrystallographyCrystal Systemcatena-[(mu-(2S3S)-3-carbamoyloxirane-2-carboxylic acid)-(mu-trifluoroacetato)-potassium]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct