0000000000724817

AUTHOR

Lars Wienbrandt

0000-0001-5685-2032

showing 7 related works from this author

Combining GPU and FPGA technology for efficient exhaustive interaction analysis in GWAS

2016

Interaction between genes has become a major topic in quantitative genetics. It is believed that these interactions play a significant role in genetic variations causing complex diseases. Due to the number of tests required for an exhaustive search in genome-wide association studies (GWAS), a large amount of computational power is required. In this paper, we present a hybrid architecture consisting of tightly interconnected CPUs, GPUs and FPGAs and a fine-tuned software suite to outperform other implementations in pairwise interaction analysis while consuming less than 300Watts and fitting into a standard desktop computer case.

0301 basic medicine03 medical and health sciences030104 developmental biologySoftware suiteComputer architecturePairwise interactionComputer scienceBrute-force searchGenome-wide association studyParallel computingComputer caseField-programmable gate arrayImplementation2016 IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP)
researchProduct

High-speed exhaustive 3-locus interaction epistasis analysis on FPGAs

2015

Abstract Epistasis, the interaction between genes, has become a major topic in molecular and quantitative genetics. It is believed that these interactions play a significant role in genetic variations causing complex diseases. Several algorithms have been employed to detect pairwise interactions in genome-wide association studies (GWAS) but revealing higher order interactions remains a computationally challenging task. State of the art tools are not able to perform exhaustive search for all three-locus interactions in reasonable time even for relatively small input datasets. In this paper we present how a hardware-assisted design can solve this problem and provide fast, efficient and exhaus…

General Computer ScienceComputer sciencebusiness.industryEpistasis and functional genomicsBrute-force searchGenome-wide association studyMutual informationQuantitative geneticsMachine learningcomputer.software_genreSupercomputerTheoretical Computer ScienceModeling and SimulationEpistasisPairwise comparisonArtificial intelligencebusinesscomputerJournal of Computational Science
researchProduct

Parallelizing Epistasis Detection in GWAS on FPGA and GPU-Accelerated Computing Systems

2015

This is a post-peer-review, pre-copyedit version of an article published in IEEE - ACM Transactions on Computational Biology and Bioinformatics. The final authenticated version is available online at: http://dx.doi.org/10.1109/TCBB.2015.2389958 [Abstract] High-throughput genotyping technologies (such as SNP-arrays) allow the rapid collection of up to a few million genetic markers of an individual. Detecting epistasis (based on 2-SNP interactions) in Genome-Wide Association Studies is an important but time consuming operation since statistical computations have to be performed for each pair of measured markers. Computational methods to detect epistasis therefore suffer from prohibitively lon…

Computer scienceBioinformaticsDNA Mutational AnalysisGenome-wide association studyParallel computingPolymorphism Single NucleotideSensitivity and SpecificityComputational biologyComputer GraphicsGeneticsComputer architectureField-programmable gate arrayRandom access memoryApplied MathematicsChromosome MappingHigh-Throughput Nucleotide SequencingReproducibility of ResultsField programmable gate arraysEpistasis GeneticSignal Processing Computer-AssistedEquipment DesignRandom access memoryComputing systemsReconfigurable computingEquipment Failure AnalysisTask (computing)EpistasisHost (network)Graphics processing unitsGenome-Wide Association StudyBiotechnology
researchProduct

FPGA-based Acceleration of Detecting Statistical Epistasis in GWAS

2014

Abstract Genotype-by-genotype interactions (epistasis) are believed to be a significant source of unexplained genetic variation causing complex chronic diseases but have been ignored in genome-wide association studies (GWAS) due to the computational burden of analysis. In this work we show how to benefit from FPGA technology for highly parallel creation of contingency tables in a systolic chain with a subsequent statistical test. We present the implementation for the FPGA-based hardware platform RIVYERA S6-LX150 containing 128 Xilinx Spartan6-LX150 FPGAs. For performance evaluation we compare against the method iLOCi[9]. iLOCi claims to outperform other available tools in terms of accuracy.…

epistasis020203 distributed computing0303 health sciencesXeonWorkstationComputer scienceGenome-wide association study02 engineering and technologycomputer.software_genrelaw.inventioncontingency tables03 medical and health sciencesAccelerationFPGA technologylaw0202 electrical engineering electronic engineering information engineeringGeneral Earth and Planetary SciencesEpistasisGWASData miningpairwise gene-gene interactionField-programmable gate arraycomputer030304 developmental biologyGeneral Environmental ScienceProcedia Computer Science
researchProduct

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions in GWAS

2014

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science. The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-09873-9_57 [Abstract] High-throughput genotyping technologies allow the collection of up to a few million genetic markers (such as SNPs) of an individual within a few minutes of time. Detecting epistasis, such as 2-SNP interactions, in Genome-Wide Association Studies is an important but time consuming operation since statistical computations have to be performed for each pair of measured markers. In this work we present EpistSearch, a parallelized tool that, following the log-linear model appr…

POSIX ThreadsMulti-core processorBioinformaticsComputer scienceComputationCUDAParallel computingBioinformaticsPthreadsCUDAAccelerationComputingMethodologies_PATTERNRECOGNITIONTitan (supercomputer)Filter (video)EpistasisGWASEpistasis
researchProduct

UPC++ for bioinformatics: A case study using genome-wide association studies

2014

Modern genotyping technologies are able to obtain up to a few million genetic markers (such as SNPs) of an individual within a few minutes of time. Detecting epistasis, such as SNP-SNP interactions, in Genome-Wide Association Studies is an important but time-consuming operation since statistical computations have to be performed for each pair of measured markers. Therefore, a variety of HPC architectures have been used to accelerate these studies. In this work we present a parallel approach for multi-core clusters, which is implemented with UPC++ and takes advantage of the features available in the Partitioned Global Address Space and Object Oriented Programming models. Our solution is base…

Object-oriented programmingComputingMethodologies_PATTERNRECOGNITIONComputer scienceComputationSingle-coreGenome-wide association studyPartitioned global address spaceParallel computingBioinformaticsSupercomputer2014 IEEE International Conference on Cluster Computing (CLUSTER)
researchProduct

Large-scale genome-wide association studies on a GPU cluster using a CUDA-accelerated PGAS programming model

2015

[Abstract] Detecting epistasis, such as 2-SNP interactions, in genome-wide association studies (GWAS) is an important but time consuming operation. Consequently, GPUs have already been used to accelerate these studies, reducing the runtime for moderately-sized datasets to less than 1 hour. However, single-GPU approaches cannot perform large-scale GWAS in reasonable time. In this work we present multiEpistSearch, a tool to detect epistasis that works on GPU clusters. While CUDA is used for parallelization within each GPU, the workload distribution among GPUs is performed with Unified Parallel C++ (UPC++), a novel extension of C++ that follows the Partitioned Global Address Space (PGAS) model…

Scale (ratio)BioinformaticsComputer sciencePGASGPUCUDAGenome-wide association studyParallel computingGPU clusterSoftware_PROGRAMMINGTECHNIQUESTheoretical Computer ScienceComputational scienceCUDAHardware and ArchitectureUnified Parallel CProgramming paradigmPartitioned global address spacecomputerUPC++Softwarecomputer.programming_languageThe International Journal of High Performance Computing Applications
researchProduct