0000000000725452
AUTHOR
Georges Kaddoum
Trajectory Design and Resource Allocation for Multi-UAV Networks : Deep Reinforcement Learning Approaches
The future mobile communication system is expected to provide ubiquitous connectivity and unprecedented services over billions of devices. The unmanned aerial vehicle (UAV), which is prominent in its flexibility and low cost, emerges as a significant network entity to realize such ambitious targets. In this work, novel machine learning-based trajectory design and resource allocation schemes are presented for a multi-UAV communications system. In the considered system, the UAVs act as aerial Base Stations (BSs) and provide ubiquitous coverage. In particular, with the objective to maximize the system utility over all served users, a joint user association, power allocation and trajectory desi…
A Comprehensive Survey on Cooperative Relaying and Jamming Strategies for Physical Layer Security
Physical layer security (PLS) has been extensively explored as an alternative to conventional cryptographic schemes for securing wireless links. Many studies have shown that the cooperation between the legitimate nodes of a network can significantly enhance their secret communications performance, relative to the noncooperative case. Motivated by the importance of this class of PLS systems, this paper provides a comprehensive survey of the recent works on cooperative relaying and jamming techniques for securing wireless transmissions against eavesdropping nodes, which attempt to intercept the transmissions. First, it provides a in-depth overview of various secure relaying strategies and sch…