0000000000725732

AUTHOR

Olga Mangoni

Automatic classification of acoustically detected krill aggregations: A case study from Southern Ocean

Acoustic surveys represent the standard methodology to assess the spatial distribution and abundance of pelagic organisms characterized by aggregative behaviour. The species identification of acoustically observed aggregations is usually performed by taking into account the biological sampling and according to expert-based knowledge. The precision of survey estimates, such as total abundance and spatial distribution, strongly depends on the efficiency of acoustic and biological sampling as well as on the species identification. In this context, the automatic identification of specific groups based on energetic and morphological features could improve the species identification process, allo…

research product

Unsupervised Classification of Acoustic Echoes from Two Krill Species in the Southern Ocean (Ross Sea)

This work presents a computational methodology able to automatically classify the echoes of two krill species recorded in the Ross sea employing scientific echo-sounder at three different frequencies (38, 120 and 200 kHz). The goal of classifying the gregarious species represents a time-consuming task and is accomplished by using differences and/or thresholds estimated on the energy features of the insonified targets. Conversely, our methodology takes into account energy, morphological and depth features of echo data, acquired at different frequencies. Internal validation indices of clustering were used to verify the ability of the clustering in recognizing the correct number of species. Th…

research product