0000000000726126

AUTHOR

W. G. Jiang

showing 2 related works from this author

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

2020

Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $\beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1…

kaliumNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]nucl-thAtomic Physics (physics.atom-ph)Nuclear TheoryOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex114 Physical sciencesphysics.atom-ph01 natural sciencesEffective nuclear chargePhysics - Atomic PhysicsNuclear Theory (nucl-th)Nuclear physicsCharge radius0103 physical sciencesNuclear Physics - ExperimentNeutronNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentPhysicsisotoopit010308 nuclear & particles physicsCharge (physics)Nuclear matter[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Coupled clusterIsotopes of potassiumNuclear Physics - TheoryydinfysiikkaNuclear densityNature Physics
researchProduct

Coherent elastic neutrino-nucleus scattering on 40Ar from first principles

2019

Coherent elastic neutrino scattering on the 40Ar nucleus is computed with coupled-cluster theory based on nuclear Hamiltonians inspired by effective field theories of quantum chromodynamics. Our approach is validated by calculating the charge form factor and comparing it to data from electron scattering. We make predictions for the weak form factor, the neutron radius, and the neutron skin, and estimate systematic uncertainties. The neutron-skin thickness of 40Ar40 is consistent with results from density functional theory. Precision measurements from coherent elastic neutrino-nucleus scattering could potentially be used to extract these observables and help to constrain nuclear models.

Quantum chromodynamicsPhysicsNuclear TheoryField (physics)010308 nuclear & particles physicsScatteringNuclear TheoryForm factor (quantum field theory)FOS: Physical sciencesObservable01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutronNeutrinoNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentElectron scattering
researchProduct