Invisible neutrino decay in precision cosmology
We revisit the topic of invisible neutrino decay in the precision cosmological context, via a first-principles approach to understanding the cosmic microwave background and large-scale structure phenomenology of such a non-standard physics scenario. Assuming an effective Lagrangian in which a heavier standard-model neutrino $\nu_H$ couples to a lighter one $\nu_l$ and a massless scalar particle $\phi$ via a Yukawa interaction, we derive from first principles the complete set of Boltzmann equations, at both the spatially homogeneous and the first-order inhomogeneous levels, for the phase space densities of $\nu_H$, $\nu_l$, and $\phi$ in the presence of the relevant decay and inverse decay p…