0000000000726703

AUTHOR

Steen Hannestad

showing 4 related works from this author

Invisible neutrino decay in precision cosmology

2021

We revisit the topic of invisible neutrino decay in the precision cosmological context, via a first-principles approach to understanding the cosmic microwave background and large-scale structure phenomenology of such a non-standard physics scenario. Assuming an effective Lagrangian in which a heavier standard-model neutrino $\nu_H$ couples to a lighter one $\nu_l$ and a massless scalar particle $\phi$ via a Yukawa interaction, we derive from first principles the complete set of Boltzmann equations, at both the spatially homogeneous and the first-order inhomogeneous levels, for the phase space densities of $\nu_H$, $\nu_l$, and $\phi$ in the presence of the relevant decay and inverse decay p…

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsCosmic microwave backgroundFOS: Physical sciencesAstronomy and AstrophysicsScalar bosonYukawa interaction01 natural sciencesCosmologyMassless particleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Phase space0103 physical sciencesHigh Energy Physics::ExperimentNeutrinoPhenomenology (particle physics)Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

The full Boltzmann hierarchy for dark matter-massive neutrino interactions

2020

The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via $u_\chi =\frac{\sigma_0}{\sigma_{Th}}\left(\frac{m_\chi}{100 \text{GeV}}\right)^{-1}$, is $u_\chi\leq3.34 \cdot 10^{-4}$, arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly …

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesContext (language use)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanckWeak gravitational lensingneutrino propertiesPhysicsdark matter theory010308 nuclear & particles physicsAstronomy and AstrophysicsCoupling (probability)Massless particleHigh Energy Physics - Phenomenologyparticle physics-cosmology connectioncosmological perturbation theorysymbolsNeutrinoHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmic Dark Radiation and Neutrinos

2013

New measurements of the cosmic microwave background (CMB) by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H-0, inferred from the Planck data and local measurements of H-0 can to some extent be alleviated by enlarging the minimal ACDM model to include additional relativistic degrees of freedom. From a fundamental physics point of v…

Big BangNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Article SubjectAge of the universeDark matterFOS: Physical sciencesLambda-CDM modelAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesBayron acoustic-Oscillationssymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Analytic approach0103 physical sciencesPlanck010306 general physicsPhysicsAstrophysics - Cosmology and Extragalactic Astrophysics010308 nuclear & particles physicsHot dark matterFísicalcsh:QC1-999High Energy Physics - Phenomenology13. Climate actionDark radiationDark energysymbolslcsh:PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsAdvances in High Energy Physics
researchProduct

A White Paper on keV sterile neutrino Dark Matter

2017

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrin…

AstrofísicaSterile neutrinocosmological modelCold dark mattercosmological neutrinosPhysics beyond the Standard Model[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matter theory01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)White paperHigh Energy Physics - Phenomenology (hep-ph)X-RAY-EMISSIONMETALLIC MAGNETIC CALORIMETERSQUANTUM-FIELD THEORY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: dark matterCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection010303 astronomy & astrophysicsPhysicsdark matter theorynew physicsDOUBLE-BETA-DECAYhep-phneutrino: sterileCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection; Astronomy and AstrophysicsNuclear & Particles PhysicsHigh Energy Physics - Phenomenologyneutrino: detectorDark matter experimentsparticle physics - cosmology connectionastro-ph.COMILKY-WAY SATELLITESCosmological neutrinos3.5 KEV LINENeutrinoParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterLY-ALPHA FORESTreviewFOS: Physical sciencesContext (language use)neutrino: productionX-raySettore FIS/05 - Astronomia e Astrofisica[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]RIGHT-HANDED NEUTRINOS0103 physical sciencesAstronomical And Space Sciencesnumerical calculationsDark matter experimentXMM-NEWTON OBSERVATIONSneutrino: modelParticle Physics - PhenomenologyDWARF SPHEROIDAL GALAXYCosmologia010308 nuclear & particles physicshep-exdark matter experimentsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsAtomic Molecular Nuclear Particle And Plasma PhysicsCosmological neutrinoAstrophysics - Astrophysics of Galaxies13. Climate actionAstrophysics of Galaxies (astro-ph.GA)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Particle physics - cosmology connection[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentneutrino: oscillation[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Journal of Cosmology and Astroparticle Physics
researchProduct