0000000000726976
AUTHOR
Gerard Tranquille
CERN ELENA project progress report
The Extra Low Energy Antiproton ring (ELENA) is a CERN project aiming at constructing a 30 m circumference synchrotron to further decelerate antiprotons from the Antiproton Decelerator (AD) from 5.3 MeV to 100 keV. The additional deceleration complemented by an electron cooler to reduce emittances will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. The ELENA design is now well advanced and the project has entered the construction stage, in particular for what concerns the infrastructure. Installation of the machine components is foreseen during the second half of 2015 and beginning of 2016 followed by ri…
Optimization of the Electron Emission From Carbon Nanotubes for Electron Cooling in ELENA
Electron cooling is a process that guarantees beam quality in low energy antimatter facilities. In ELENA the electron cooler allows to reduce the emittance blow-up of the antiproton beam, thus delivering highly focused and bright beams at the unprecedented low energy of 100 keV to the experiments. In order to have a "cold" beam at such low energy, the electron gun of the cooler must emit a monoenergetic and relatively intense electron beam. Simulations have shown that efficient cooling can be achieved with a 5 mA electron beam having transverse energy spread of less than 100 meV and longitudinal energy spread of about 1 meV. A thermionic gun is currently used in operation, although it limit…
The ELENA facility
The CERN Antiproton Decelerator (AD) provides antiproton beams with a kinetic energy of 5.3 MeV to an active user community. The experiments would profit from a lower beam energy, but this extraction energy is the lowest one possible under good conditions with the given circumference of the AD. The Extra Low Energy Antiproton ring (ELENA) is a small synchrotron with a circumference a factor of 6 smaller than the AD to further decelerate antiprotons from the AD from 5.3 MeV to 100 keV. Controlled deceleration in a synchrotron equipped with an electron cooler to reduce emittances in all three planes will allow the existing AD experiments to increase substantially their antiproton capture effi…