0000000000727056

AUTHOR

B. M. Retailleau

showing 2 related works from this author

New exotic beams from the SPIRAL 1 upgrade

2018

Since 2001, the SPIRAL 1 facility has been one of the pioneering facilities in ISOL techniques for reaccelerating radioactive ion beams: the fragmentation of the heavy ion beams of GANIL on graphite targets and subsequent ionization in the Nanogan ECR ion source has permitted to deliver beams of gaseous elements (He, N, O, F, Ne, Ar, Kr) to numerous experiments. Thanks to the CIME cyclotron, energies up to 20 AMeV could be obtained. In 2014, the facility was stopped to undertake a major upgrade, with the aim to extend the production capabilities of SPIRAL 1 to a number of new elements. This upgrade, which is presently under commissioning, consists in the integration of an ECR booster in the…

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsNuclear engineering[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]tutkimuslaitteetCyclotronFOS: Physical scienceshiukkaskiihdyttimet[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex7. Clean energy01 natural sciencesIonlaw.inventionion sourceslawIonization0103 physical sciencesIon sourcesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)radioactive ion beams010306 general physicsNuclear ExperimentInstrumentationRadioactive ion beamsphysics.acc-ph[PHYS]Physics [physics]Physics010308 nuclear & particles physicsAccelerators and Storage RingsIon sourceUpgradesäteilyfysiikkaBeamlinePhysics - Accelerator PhysicsAGATABeam (structure)
researchProduct

The MORA project

2018

The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.

Physics - Instrumentation and Detectorsexperimental methodsPhysics beyond the Standard Model42.25.Janucl-ex01 natural sciences7. Clean energylaw.invention23.40.-slawPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Detectors and Experimental TechniquesNuclear Experimentphysics.ins-detPhysicsLarge Hadron Colliderion trapsOrientation (computer vision)Instrumentation and Detectors (physics.ins-det)Condensed Matter PhysicsComputer Science::Computers and SocietyAtomic and Molecular Physics and OpticsIon trapydinfysiikkaNuclear and High Energy PhysicsFOS: Physical sciencesTrapping[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Computer Science::Digital LibrariesIonFundamental symmetriesNuclear physics0103 physical sciencesCP: violation37.10.TyNuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physical and Theoretical Chemistry010306 general physicsactivity reportion: capturenucleus: semileptonic decayCondensed Matter::Quantum Gases010308 nuclear & particles physicsBeta DecayLaserlaserDipoleefficiencycorrelationfundamental symmetries11.30.Erbeta decayIon traps
researchProduct