0000000000727366
AUTHOR
Patrick W. V. Butler
Self-assembly of M4L4 tetrahedral cages incorporating pendant P=S and P=Se functionalised ligands
Herein, the synthesis of metal–organic tetrahedral cages featuring flexible thio- and selenophosphate-based ligands is described. The cages were prepared by sub-component self-assembly of A=P(OC6H4NH2-4)3 (A = S, Se) or S=P(SC6H4NH2-4)3,2-pyridinecarboxaldehyde, and either Fe[BF4]2 or Co[BF4]2. Preliminary host–guest studies into the ability of the pendant PQS and PQSe groups to interact with suitable substrates will be discussed. peerReviewed
Self-assembly of M4L4tetrahedral cages incorporating pendant PS and PSe functionalised ligands
Herein, the synthesis of metal–organic tetrahedral cages featuring flexible thio- and selenophosphate-based ligands is described. The cages were prepared by sub-component self-assembly of AP(OC6H4NH2-4)3 (A = S, Se) or SP(SC6H4NH2-4)3, 2-pyridinecarboxaldehyde, and either Fe[BF4]2 or Co[BF4]2. Preliminary host–guest studies into the ability of the pendant PS and PSe groups to interact with suitable substrates will be discussed.
The Synthesis of Quinoline‐based Tin Complexes with Pendant Schiff Bases
Whilst pursuing the synthetic utility of quinoline‐based tin complexes, Me2Sn(Quin‐NO2)2 (1) and Ph2Sn(Quin‐NO2)2 (2) (Quin‐NO2 = 5‐nitroquinolino‐8‐oate) were synthesized bearing coordinatively inert nitro groups. Conventional reduction methodologies successfully converted 1 to Me2Sn(Quin‐NH2)2 (3) and 2 to Ph2Sn(Quin‐NH2)2 (4) (Quin‐NH2 = 5‐aminoquinolino‐8‐oate). The synthetically useful amine groups proved difficult to exploit in the presence of the central tin atom, however, a complete Schiff base functionalized Sn complex of the dimethyltin pro‐ligand Me2Sn(Quin‐py)2 (6) was successfully synthesized from 5‐[(pyridin‐2‐ylmethylene)amino]quinolin‐8‐ol (HQuin‐py; 5) in good yield via an …
The Synthesis of Quinoline-based Tin Complexes with Pendant Schiff Bases
CCDC 1885471: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Jas S. Ward|2019|Z.Anorg.Allg.Chem.|645|694|doi:10.1002/zaac.201900063
CCDC 1885470: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Jas S. Ward|2019|Z.Anorg.Allg.Chem.|645|694|doi:10.1002/zaac.201900063
CCDC 1938076: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Paul E. Kruger, Jas S. Ward|2019|Chem.Commun.|55|10304|doi:10.1039/C9CC05443J
CCDC 1885473: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Jas S. Ward|2019|Z.Anorg.Allg.Chem.|645|694|doi:10.1002/zaac.201900063
CCDC 1885481: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Jas S. Ward|2019|Z.Anorg.Allg.Chem.|645|694|doi:10.1002/zaac.201900063
CCDC 1938073: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Paul E. Kruger, Jas S. Ward|2019|Chem.Commun.|55|10304|doi:10.1039/C9CC05443J
CCDC 1885472: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Jas S. Ward|2019|Z.Anorg.Allg.Chem.|645|694|doi:10.1002/zaac.201900063
CCDC 1938074: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Paul E. Kruger, Jas S. Ward|2019|Chem.Commun.|55|10304|doi:10.1039/C9CC05443J
CCDC 1938075: Experimental Crystal Structure Determination
Related Article: Patrick W. V. Butler, Paul E. Kruger, Jas S. Ward|2019|Chem.Commun.|55|10304|doi:10.1039/C9CC05443J