0000000000727406

AUTHOR

Tousif Rahman

Low-Power Audio Keyword Spotting using Tsetlin Machines

The emergence of Artificial Intelligence (AI) driven Keyword Spotting (KWS) technologies has revolutionized human to machine interaction. Yet, the challenge of end-to-end energy efficiency, memory footprint and system complexity of current Neural Network (NN) powered AI-KWS pipelines has remained ever present. This paper evaluates KWS utilizing a learning automata powered machine learning algorithm called the Tsetlin Machine (TM). Through significant reduction in parameter requirements and choosing logic over arithmetic based processing, the TM offers new opportunities for low-power KWS while maintaining high learning efficacy. In this paper we explore a TM based keyword spotting (KWS) pipe…

research product

Learning automata based energy-efficient AI hardware design for IoT applications

Energy efficiency continues to be the core design challenge for artificial intelligence (AI) hardware designers. In this paper, we propose a new AI hardware architecture targeting Internet of Things applications. The architecture is founded on the principle of learning automata, defined using propositional logic. The logic-based underpinning enables low-energy footprints as well as high learning accuracy during training and inference, which are crucial requirements for efficient AI with long operating life. We present the first insights into this new architecture in the form of a custom-designed integrated circuit for pervasive applications. Fundamental to this circuit is systematic encodin…

research product

Learning automata based energy-efficient AI hardware design for IoT applications: Learning Automata based AI Hardware

research product