0000000000728945

AUTHOR

O. Stetzer

Trace analysis of plutonium in environmental samples by resonance ionization mass spectroscopy (RIMS)

Resonance ionization mass spectroscopy (RIMS) is well suited for trace analysis of long-lived radioisotopes in environmental, biological and technical samples. By multiple resonant laser excitation and ionization of the elemental atoms under investigation, an extremely high element selectivity can be achieved. In addition, isotope selectivity is obtained by subsequent mass analysis. The excellent sensitivity results from the large atomic cross-sections in the excitation–ionization process and the good detection efficiency for ions. The element selectivity of RIMS allows a simplified procedure for the chemical preparation of the samples compared to the requirements of thin sources for α-spec…

research product

Determination of the first ionization potential of einsteinium by resonance ionization mass spectroscopy (RIMS)

Abstract The first ionization potential of einsteinium (IP Es ) was determined by resonance ionization mass spectroscopy (RIMS) using samples with ≤10 12 atoms of 254 Es ( T 1/2 =276 days). This method is based on the measurement of photoionization thresholds as a function of applied electric field strength, followed by extrapolation to zero field strength to yield IP Es . An atomic beam of Es was created by heating a filament on which einsteinium was electrodeposited from an aqueous solution onto a tantalum backing and covered with titanium metal. Es atoms were ionized via a three-step excitation scheme, and the ions mass-selectively detected in a time-of-flight (TOF) mass spectrometer. Th…

research product

Production of monodisperse uranium oxide particles and their characterization by scanning electron microscopy and secondary ion mass spectrometry

Abstract Secondary ion mass spectrometry (SIMS) can be confidently used to measure uranium isotopic ratios in single particles. Dense particles of known isotopic composition and size allow the precision and the accuracy of the applied procedure to be estimated. These particles can be obtained by dissolving standard reference uranium materials, nebulizing the solution in droplets of proper diameter and collecting the particles after the desolvation and calcination of the droplets. A new instrumental set up, based on a commercial vibrating orifice aerosol generator to generate monodisperse droplets of the solutions from four uranium oxide reference materials, is described. The droplets were d…

research product