0000000000729101
AUTHOR
Walter Holweger
White Etching Crack Root Cause Investigations
White etching crack (WEC) failure is distinct to classical fatigue and driven by the composition of lubricants under special loading conditions; for example, slippage and electricity. The white etching area (WEA) within WEC contains carbon supersaturated ferrite (bcc-iron) and carbides, with a size of a few nanometers. This article presents investigations supporting the hypothesis that WEC processes start within a failure-free period by successive accumulation of a structural distortion. This can be measured by acoustic emission. Failure statistics show a steep ascent in the Weibull diagram (s values beyond 1) leading to the assumption that WEC processes start unsuspicious, as one would see…
Modelling of thermal stresses in bearing steel structure generated by electrical current impulses
This work is the study of one particular candidate for white etching crack (WEC) initiation mechanism in wind turbine gearbox bearings: discharge current impulses flowing through bearing steel with associated thermal stresses and material fatigue. Using data/results from previously published works, the authors develop a series of models that are utilized to simulate these processes under various conditions/local microstructure configurations, as well as to verify the results of the previous numerical studies. Presented models show that the resulting stresses are several orders of magnitude below the fatigue limit/yield strength for the parameters used herein. Results and analysis of models …