0000000000729114
AUTHOR
G. Raming
Numerical investigation of the influence of EM-fields on fluid motion and resistivity distribution during floating-zone growth of large silicon single crystals
The floating-zone-process with needle-eye inductor is a complex process with many coupled parameters that have nonlinear influence on the process stability and resistivity distribution in the silicon single crystal. To fulfill the requirements of semiconductor industry for tighter specification of resistivity distribution, additional means like magnetic fields can be used to reach a more homogeneous resistivity distribution without disturbing process stability. The current paper analyses the influence of static and alternating fields on the fluid motion and macroscopic and microscopic resistivity profile by means of numerical calculations. It is found that with a lower frequency of the HF-i…
Numerical 3D study of FZ growth: dependence on growth parameters and melt instability
Three-dimensional modelling of the floating zone (needle-eye) crystal growth process is carried out to analyse numerically the stability of the melt flow and the influence of the crystal rotation rate and inductor slit width on the 3D flow field and on the grown crystal resistivity. The unsteadiness of the melt is simulated and it is found that for the considered growth parameters a steady-state flow can be a reasonable approximation to the unsteady melt motion. The parametric studies have shown that increasing the rotation rate essentially changes the flow pattern and weakens the rotational striations, while the inductor slit width has a more local influence on these characteristics.
Stress-induced dislocation generation in large FZ- and CZ-silicon single crystals—numerical model and qualitative considerations
When growing silicon crystals with higher diameter (presently up to 300 mm) the thermal stresses and possible dislocation generation in single crystals become a serious problem for both FZ- and CZ-methods. A two-dimensional problem oriented code for the FEM-package ANSYS has been developed to calculate the temperature field in the growing crystal considering radiation exchange with reflectors and environment and thermal stresses. Comparing calculated stresses with critical stresses, the dislocated zone is determined. A qualitative concept for the occurrence of dislocations using the metastable state is developed. In a parametric study for different thermal boundary conditions and crystal ge…
Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth
Abstract Three-dimensional numerical modelling is carried out to analyse the floating zone crystal growth with the needle-eye technique used for the production of high-quality silicon single crystals with large diameters ( ⩾100 mm ). Since the pancake inductor has only one turn, the EM field and the distribution of heat sources and EM forces are only roughly axisymmetric. The non-symmetry together with crystal rotation reflects itself on the hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. The non-symmetric high-frequency electromagnetic field of …