0000000000730083

AUTHOR

S. Elgeti

showing 2 related works from this author

Overview of first Wendelstein 7-X high-performance operation

2019

Abstract The optimized superconducting stellarator device Wendelstein 7-X (with major radius , minor radius , and plasma volume) restarted operation after the assembly of a graphite heat shield and 10 inertially cooled island divertor modules. This paper reports on the results from the first high-performance plasma operation. Glow discharge conditioning and ECRH conditioning discharges in helium turned out to be important for density and edge radiation control. Plasma densities of with central electron temperatures were routinely achieved with hydrogen gas fueling, frequently terminated by a radiative collapse. In a first stage, plasma densities up to were reached with hydrogen pellet injec…

TechnologyCONFINEMENT01 natural sciencesimpurities010305 fluids & plasmaslaw.inventionECR heatingDivertorDENSITY LIMITlawData_FILESGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)004 Datenverarbeitung; InformatikPhysicsGlow dischargeDivertorCondensed Matter PhysicsContent (measure theory)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGElectron temperatureAtomic physicsddc:620StellaratorImpuritiesNuclear and High Energy PhysicsTechnology and Engineeringplasma performancechemistry.chemical_elementAtmospheric-pressure plasmaPHYSICSstellaratorPhysics::Plasma PhysicsNBI heating0103 physical sciencesdivertor010306 general physicsHeliumStellaratorPlasma performanceturbulenceFísicaW7-XTurbulenceTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESchemistryddc:004ddc:600Energy (signal processing)SYSTEMNuclear Fusion
researchProduct

Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification

2017

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

plasma-facing components ; plasma-surface interaction ; power exhaust ; particle exhaust ; tungsten ; berylliumNuclear and High Energy PhysicstungstenNuclear engineeringPlasma surface interactionparticle exhaustplasma-facing components01 natural sciences114 Physical sciences010305 fluids & plasmas0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]ddc:530beryllium; particle exhaust; plasma-facing components; plasma-surface interaction; power exhaust; tungsten; Nuclear and High Energy Physics; Condensed Matter Physics010306 general physicsplasma-surface interaction;particle exhaust;tungsten;beryllium;power exhaust;plasma-facing componentspower exhaustPhysicsPlasma16. Peace & justiceberylliumCondensed Matter PhysicsInteraction studiesEnvironmental science[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]plasma-surface interaction
researchProduct