0000000000730106

AUTHOR

Claire L. Ryder

showing 8 related works from this author

A case study of the radiative effect of aerosols over Europe: EUCAARI-LONGREX

2016

The radiative effect of anthropogenic aerosols over Europe during the 2008 European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions Long Range Experiment (EUCAARI-LONGREX) campaign has been calculated using measurements collected by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft and radiative transfer modelling. The aircraft sampled anthropogenically perturbed air masses across north-western Europe under anticyclonic conditions with aerosol optical depths ranging from 0.047 to 0.357. For one specially designed “radiative closure” flight, simulated irradiances have been compared to radiation measurements for a case of aged European aerosol…

010504 meteorology & atmospheric sciences13. Climate action0207 environmental engineering02 engineering and technology020701 environmental engineering01 natural sciences0105 earth and related environmental sciences
researchProduct

An overview and issues of the sky radiometer technology and SKYNET

2020

Abstract. This paper overviews the progress in the sky radiometer technology and development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from the sky radiometer observation of aerosol, cloud, water vapor and ozone. Increasing collaborations of users in the SKYNET community are becoming a useful platform for research and operation. The paper also presents issues of the technology for future development.

Radiometerbusiness.industrySkymedia_common.quotation_subjectSKYNETCalibrationEnvironmental scienceCloud computingbusinessWater vaporRetrieval algorithmRemote sensingmedia_common
researchProduct

Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D

2018

During the summertime, dust from the Sahara can be efficiently transported westwards within the Saharan air layer (SAL). This can lead to high aerosol loadings being observed above a relatively clean marine boundary layer (MBL) in the tropical Atlantic Ocean. These dust layers can impart significant radiative effects through strong visible and IR light absorption and scattering, and can also have indirect impacts by altering cloud properties. The processing of the dust aerosol can result in changes in both direct and indirect radiative effects, leading to significant uncertainty in climate prediction in this region. During August 2015, measurements of aerosol and cloud properties were condu…

AerosolsTermodinàmica atmosfèricalcsh:Chemistrylcsh:QD1-99913. Climate actionlcsh:Physicslcsh:QC1-999Atmospheric Chemistry and Physics
researchProduct

Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

2015

Abstract. The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated met…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologyPlanetary boundary layerCONVECTIVE SYSTEMEnvironmental Sciences & EcologyAEROSOL OPTICAL-PROPERTIESMineral dust010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesCOARSE MODElcsh:ChemistryHaboobDust storm0201 Astronomical and Space SciencesMeteorology & Atmospheric SciencesSatellite imagerySOUTHERN MOROCCO0105 earth and related environmental sciences[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]GBScience & TechnologyHEAT LOWAIRBORNE OBSERVATIONSRETRIEVAL PRODUCTSOzone depletionlcsh:QC1-999PARTICLE-SIZEAERONETBoundary layerlcsh:QD1-99913. Climate action[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyPhysical SciencesWEST-AFRICAN MONSOONEnvironmental science0401 Atmospheric SciencesNORTH-ATLANTIC OCEANLife Sciences & Biomedicinelcsh:PhysicsEnvironmental SciencesAtmospheric Chemistry and Physics
researchProduct

An overview of and issues with sky radiometer technology and SKYNET

2020

This paper is an overview of the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. A formula was proposed for estimating the accuracy of the sky radiometer calibration constant F0 using the improved Langley (IL) method, which was found to be a good approximation to observed monthly mean uncertainty in F0, around 0.5 % to 2.4 % at the Tokyo and Rome sites and smaller values of around 0.3 % to 0.5 % at the mountain sites at Mt. Sarasw…

Atmospheric Science010504 meteorology & atmospheric sciencesphotometrymedia_common.quotation_subjectskynet networkSKYNET010501 environmental sciences01 natural scienceslcsh:TA170-1710105 earth and related environmental sciencesmedia_commonRemote sensingAerosolsRadiometerDobson unitlcsh:TA715-787lcsh:Earthwork. FoundationsDiffuse sky radiationAlbedoaerosol optical propertiesAerosolAERONETlcsh:Environmental engineeringsky radiometerAtmosferaSkyEnvironmental scienceAtmospheric Measurement Techniques
researchProduct

Studies on mineral dust using airborne lidar, ground-based remote sensing, and in situ instrumentation

2018

In August 2015, the AER-D campaign made use of the FAAM research aircraft based in Cape Verde, and targeted mineral dust. First results will be shown here. The campaign had multiple objectives: (1) lidar dust mapping for the validation of satellite and model products; (2) validation of sunphotometer remote sensing with airborne measurements; (3) coordinated measurements with the CATS lidar on the ISS; (4) radiative closure studies; and (5) the validation of a new model of dustsonde.

In situ instrumentationLidar010504 meteorology & atmospheric sciencesRemote sensing (archaeology)PhysicsQC1-999Creative commonsMineral dust010502 geochemistry & geophysics01 natural sciencesLicense0105 earth and related environmental sciencesRemote sensingEPJ Web of Conferences
researchProduct

Unexpected vertical structure of the Saharan Air Layer and giant dust particles during AER-D

2018

The Saharan Air Layer (SAL) in the summertime eastern Atlantic is typically well mixed and 3–4 km deep, overlying the marine boundary layer (MBL). In this paper, we show experimental evidence that at times a very different structure can be observed. During the AERosol properties – Dust (AER-D) airborne campaign in August 2015, the typical structure described above was observed most of the time, and was associated with a moderate dust content yielding an aerosol optical depth (AOD) of 0.3–0.4 at 355 nm. In an intense event, however, an unprecedented vertical structure was observed close to the eastern boundary of the basin, displaying an uneven vertical distribution and a very …

Termodinàmica atmosfèricaAtmospheric ScienceMarine boundary layerSaharan Air Layer010504 meteorology & atmospheric sciencesDust particles010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryAtmosphereRadiative TransferRadiative transferDust transportGiant dust particlesAER-D0105 earth and related environmental sciencesSaharan Air LayerAerosol Optical DepthLightninglcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceShortwavelcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic

2018

Mineral dust is an important component of the climate system, affecting the radiation balance, cloud properties, biogeochemical cycles, regional circulation and precipitation, as well as having negative effects on aviation, solar energy generation and human health. Dust size and composition has an impact on all these processes. However, changes in dust size distribution and composition during transport, particularly for coarse particles, are poorly understood and poorly represented in climate models. Here we present new in situ airborne observations of dust in the Saharan Air Layer (SAL) and the marine boundary layer (MBL) at the beginning of its transatlantic transport pathway, from the AE…

Termodinàmica atmosfèrica[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere
researchProduct