0000000000730534

AUTHOR

Giuseppe Favacchio

showing 15 related works from this author

Multiprojective spaces and the arithmetically Cohen-Macaulay property

2019

AbstractIn this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for ℙ1× ℙ1and, more recently, in (ℙ1)r. In ℙ1× ℙ1the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in ℙm× ℙn. In such an ambient space it is equivalent to the so-called (⋆)-property. Moreover, we start an investigation of the ACM property in ℙ1× ℙn. We give a new construction that highlights how different the behavior of the ACM property is in this setting.

Pure mathematicsArithmetically Cohen-Macaulay multiprojective spacesProperty (philosophy)points in multiprojective spaces arithmetically Cohen-Macaulay linkageGeneral MathematicsStar (graph theory)Space (mathematics)Commutative Algebra (math.AC)01 natural sciencesMathematics - Algebraic Geometryarithmetically Cohen-MacaulayTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesFOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)Mathematics010102 general mathematics14M05 13C14 13C40 13H10 13A15Mathematics - Commutative Algebrapoints in multiprojective spacesAmbient spaceSettore MAT/02 - Algebra010307 mathematical physicsSettore MAT/03 - Geometrialinkage
researchProduct

Linear quotients of Artinian Weak Lefschetz algebras

2013

Abstract We study the Hilbert function and the graded Betti numbers for “generic” linear quotients of Artinian standard graded algebras, especially in the case of Weak Lefschetz algebras. Moreover, we investigate a particular property of Weak Lefschetz algebras, the Betti Weak Lefschetz Property, which makes possible to completely determine the graded Betti numbers of a generic linear quotient of such algebras.

Discrete mathematicsPure mathematicsHilbert series and Hilbert polynomialAlgebra and Number TheoryProperty (philosophy)Mathematics::Commutative AlgebraBetti numberBetti Weak Lefschetz PropertyMathematics::Rings and AlgebrasArtinian algebraLinear quotientWeak Lefschetz Propertysymbols.namesakeQuotientWeak Lefschetz; Artinian algebra; QuotientsymbolsWeak Lefschetz Property Artinian algebra Linear quotientLefschetz fixed-point theoremWeak LefschetzMathematics::Symplectic GeometryQuotientMathematics
researchProduct

Special arrangements of lines: Codimension 2 ACM varieties in P 1 × P 1 × P 1

2019

In this paper, we investigate special arrangements of lines in multiprojective spaces. In particular, we characterize codimension 2 arithmetically Cohen–Macaulay (ACM) varieties in [Formula: see text], called varieties of lines. We also describe their ACM property from a combinatorial algebra point of view.

Pure mathematicsAlgebra and Number TheoryMathematics::Commutative AlgebraConfiguration of linesApplied Mathematics010102 general mathematicsarithmetically Cohen-Macaulay; Configuration of lines; multiprojective spaces0102 computer and information sciencesCodimension01 natural sciencesSettore MAT/02 - Algebraarithmetically Cohen-Macaulay010201 computation theory & mathematicsarithmetically Cohen–Macaulay Configuration of lines multiprojective spacesArithmetically Cohen-Macaulay Configuration of lines multiprojective spacesComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONSettore MAT/03 - Geometria0101 mathematicsarithmetically Cohen–Macaulaymultiprojective spacesMathematics
researchProduct

On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces

2017

We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially ( P 1 ) n (\mathbb P^1)^n . A combinatorial characterization, the ( ⋆ ) (\star ) -property, is known in P 1 × P 1 \mathbb P^1 \times \mathbb P^1 . We propose a combinatorial property, ( ⋆ s ) (\star _s) with 2 ≤ s ≤ n 2\leq s\leq n , that directly generalizes the ( ⋆ ) (\star ) -property to ( P 1 ) n (\mathbb P^1)^n for larger n n . We show that X X is ACM if and only if it satisfies the ( ⋆ n ) (\star _n) -property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.

Property (philosophy)General MathematicsStar (game theory)Arithmetically Cohen-Macaulay; Linkage; Points in multiprojective spacescohen- macaulayCharacterization (mathematics)Commutative Algebra (math.AC)01 natural sciencesCombinatoricsMathematics - Algebraic GeometryPoints in multiprojective spaces0103 physical sciencesFOS: MathematicsProjective space0101 mathematicsFinite setAlgebraic Geometry (math.AG)multiprojective spacesMathematicsDiscrete mathematicsMathematics::Commutative AlgebraLinkageArithmetically Cohen-Macaulay Linkage Points in multiprojective spacesApplied Mathematics010102 general mathematicsExtension (predicate logic)Mathematics - Commutative AlgebraArithmetically Cohen-MacaulaypointsSettore MAT/02 - Algebracohen- macaulay multiprojective spaces points010307 mathematical physicsSettore MAT/03 - Geometria
researchProduct

Steiner systems and configurations of points

2020

AbstractThe aim of this paper is to make a connection between design theory and algebraic geometry/commutative algebra. In particular, given any Steiner SystemS(t, n, v) we associate two ideals, in a suitable polynomial ring, defining a Steiner configuration of points and its Complement. We focus on the latter, studying its homological invariants, such as Hilbert Function and Betti numbers. We also study symbolic and regular powers associated to the ideal defining a Complement of a Steiner configuration of points, finding its Waldschmidt constant, regularity, bounds on its resurgence and asymptotic resurgence. We also compute the parameters of linear codes associated to any Steiner configur…

Linear codes; Monomial ideals; Stanley Reisner rings; Steiner systems; Symbolic powersSteiner systemsBetti numberPolynomial ring0102 computer and information sciencesAlgebraic geometrySymbolic powers01 natural sciencessymbols.namesakeMathematics - Algebraic GeometryLinear codesTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYMonomial idealsComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsMathematics - CombinatoricsIdeal (ring theory)0101 mathematicsCommutative algebraAlgebraic Geometry (math.AG)Complement (set theory)MathematicsDiscrete mathematicsHilbert series and Hilbert polynomialApplied Mathematics010102 general mathematicsStanley Reisner ringsLinear codes Monomial ideals Stanley Reisner rings Steiner systems Symbolic powersComputer Science Applications51E10 13F55 13F20 14G50 94B27Settore MAT/02 - AlgebraSteiner systemSteiner systems Monomial ideals Symbolic powers Stanley Reisner rings Linear codes010201 computation theory & mathematicssymbolsCombinatorics (math.CO)Settore MAT/03 - GeometriaMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

The minimal free resolution of fat almost complete intersections in ℙ1 x ℙ1

2017

AbstractA current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case where I = IX is an ideal deûning an almost complete intersection (ACI) set of points X in ℙ1 × ℙ1. In particular, we describe a minimal free bigraded resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set 𝒵 of fat points whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of triple points. We call 𝒵 a fat ACI.We also show that its symbolic and ordinary powers are equal, i.e, .

Current (mathematics)Ideal (set theory)General MathematicsPoints in ℙ1× ℙ1010102 general mathematicsComplete intersectionArithmetically Cohen-Macaulay; Points in ℙ1× ℙ1; Resolution; Symbolic powersSymbolic powers01 natural sciencesArithmetically Cohen-MacaulayCombinatoricsSet (abstract data type)Settore MAT/02 - AlgebraHomogeneous0103 physical sciencesArithmetically Cohen-Macaulay Points in ℙ1xℙ1 Resolution Symbolic powersSettore MAT/03 - Geometria010307 mathematical physics0101 mathematicsResolutionFocus (optics)Resolution (algebra)Mathematics
researchProduct

Rational normal curves and Hadamard products

2021

AbstractGiven $$r>n$$ r > n general hyperplanes in $$\mathbb P^n,$$ P n , a star configuration of points is the set of all the n-wise intersection of the hyperplanes. We introduce contact star configurations, which are star configurations where all the hyperplanes are osculating to the same rational normal curve. In this paper, we find a relation between this construction and Hadamard products of linear varieties. Moreover, we study the union of contact star configurations on a same conic in $$\mathbb P^2$$ P 2 , we prove that the union of two contact star configurations has a special h-vector and, in some cases, this is a complete intersection.

Hadamard productGeneral Mathematics13C40 13C70 14M10 14M99 14N20Astrophysics::Cosmology and Extragalactic AstrophysicsMathematics - Commutative AlgebraCommutative Algebra (math.AC)Complete intersection Hadamard product Star configuration GorensteinSettore MAT/02 - AlgebraMathematics - Algebraic GeometryComplete intersection Hadamard product star configuration Gorenstein.FOS: MathematicsStar configurationAstrophysics::Solar and Stellar AstrophysicsSettore MAT/03 - GeometriaAstrophysics::Earth and Planetary AstrophysicsAlgebraic Geometry (math.AG)Complete intersectionAstrophysics::Galaxy AstrophysicsGorenstein
researchProduct

Expecting the unexpected: Quantifying the persistence of unexpected hypersurfaces

2021

If $X \subset \mathbb P^n$ is a reduced subscheme, we say that $X$ admits an unexpected hypersurface of degree $t$ for multiplicity $m$ if the imposition of having multiplicity $m$ at a general point $P$ fails to impose the expected number of conditions on the linear system of hypersurfaces of degree $t$ containing $X$. Conditions which either guarantee the occurrence of unexpected hypersurfaces, or which ensure that they cannot occur, are not well understand. We introduce new methods for studying unexpectedness, such as the use of generic initial ideals and partial elimination ideals to clarify when it can and when it cannot occur. We also exhibit algebraic and geometric properties of $X$ …

Pure mathematicsGeneral MathematicsComplete intersectionVector bundleAlgebraic geometrysymbols.namesakeMathematics - Algebraic GeometryAV-sequence; Complete intersection; Generic initial ideal; Hilbert function; Partial elimination ideal; Unexpected hypersurfaceUnexpected hypersurfaceFOS: MathematicsAlgebraic numberAV-sequenceAlgebraic Geometry (math.AG)Complete intersectionGeneric initial idealMathematicsHilbert series and Hilbert polynomialSequencePartial elimination idealSettore MAT/02 - AlgebraHypersurfaceHyperplanePrimary: 14C20 13D40 14Q10 14M10 Secondary: 14M05 14M07 13E10Hilbert functionsymbolsSettore MAT/03 - GeometriaAV-sequence Complete intersection Generic initial ideal Hilbert function Partial elimination ideal Unexpected hypersurface
researchProduct

Steiner configurations ideals: Containment and colouring

2021

Given a homogeneous ideal I&sube

HypergraphSteiner systemsCurrent (mathematics)General MathematicsIdeals of points Monomial ideals Steiner systems Symbolic powers of ideals Waldschmidt constantideals of points0102 computer and information sciencesCommutative Algebra (math.AC)01 natural sciencesCombinatoricsMathematics - Algebraic GeometryMonomial idealsFOS: MathematicsComputer Science (miscellaneous)Mathematics - Combinatorics13F55 13F20 14G50 51E10 94B270101 mathematicsAlgebraic Geometry (math.AG)Engineering (miscellaneous)MathematicsSymbolic powers of idealsmonomial idealsContainment (computer programming)ConjectureIdeal (set theory)Mathematics::Commutative Algebralcsh:Mathematics010102 general mathematicslcsh:QA1-939Mathematics - Commutative AlgebraIdeals of pointsWaldschmidt constantComplement (complexity)Settore MAT/02 - AlgebraSteiner systemCover (topology)010201 computation theory & mathematicssymbolic powers of idealsIdeals of points; Monomial ideals; Steiner systems; Symbolic powers of ideals; Waldschmidt constantCombinatorics (math.CO)Settore MAT/03 - Geometriamonomial ideals ideals of points symbolic powers of ideals Waldschmidt constant Steiner systems
researchProduct

Regularity and h-polynomials of toric ideals of graphs

2020

For all integers 4 ≤ r ≤ d 4 \leq r \leq d , we show that there exists a finite simple graph G = G r , d G= G_{r,d} with toric ideal I G ⊂ R I_G \subset R such that R / I G R/I_G has (Castelnuovo–Mumford) regularity r r and h h -polynomial of degree d d . To achieve this goal, we identify a family of graphs such that the graded Betti numbers of the associated toric ideal agree with its initial ideal, and, furthermore, that this initial ideal has linear quotients. As a corollary, we can recover a result of Hibi, Higashitani, Kimura, and O’Keefe that compares the depth and dimension of toric ideals of graphs.

Hilbert seriesBetti numberGeneral MathematicsDimension (graph theory)0102 computer and information sciencesCommutative Algebra (math.AC)01 natural sciencesRegularityCombinatoricssymbols.namesakeMathematics - Algebraic GeometryCorollaryMathematics::Algebraic GeometryGraded Betti numbers; Graphs; Hilbert series; Regularity; Toric idealsFOS: MathematicsIdeal (ring theory)13D02 13P10 13D40 14M25 05E400101 mathematicsAlgebraic Geometry (math.AG)QuotientHilbert–Poincaré seriesMathematicsSimple graphDegree (graph theory)Mathematics::Commutative AlgebraApplied Mathematics010102 general mathematicsMathematics - Commutative AlgebraSettore MAT/02 - AlgebraToric ideals010201 computation theory & mathematicsGraded Betti numbers Graphs Hilbert series Regularity Toric idealssymbolsSettore MAT/03 - GeometriaGraded Betti numbersGraphs
researchProduct

In the Shadows of a hypergraph: looking for associated primes of powers of squarefree monomial ideals

2018

The aim of this paper is to study the associated primes of powers of square-free monomial ideals. Each square-free monomial ideal corresponds uniquely to a finite simple hypergraph via the cover ideal construction, and vice versa. Let H be a finite simple hypergraph and J(H) the cover ideal of H. We define the shadows of hypergraph, H, described as a collection of smaller hypergraphs related to H under some conditions. We then investigate how the shadows of H preserve information about the associated primes of the powers of J(H). Finally, we apply our findings on shadows to study the persistence property of square-free monomial ideals and construct some examples exhibiting failure of contai…

HypergraphMonomialProperty (philosophy)Associated primes Cover ideals Hypergraphs Powers of idealsMathematics::Number Theory0102 computer and information sciencesHypergraphsCommutative Algebra (math.AC)01 natural sciencesCover idealsCombinatoricsSimple (abstract algebra)FOS: MathematicsMathematics - CombinatoricsDiscrete Mathematics and CombinatoricsPowers of ideals0101 mathematicsMathematicsAlgebra and Number TheoryIdeal (set theory)Mathematics::Commutative Algebra010102 general mathematicsAssociated primes; Cover ideals; Hypergraphs; Powers of idealsMonomial idealSquare-free integerMathematics - Commutative AlgebraSettore MAT/02 - AlgebraCover (topology)010201 computation theory & mathematicsAssociated primesSettore MAT/03 - GeometriaCombinatorics (math.CO)05C65 13F55 05E99 13C99
researchProduct

Tower sets and other configurations with the Cohen-Macaulay property

2014

Abstract Some well-known arithmetically Cohen–Macaulay configurations of linear varieties in P r as k-configurations, partial intersections and star configurations are generalized by introducing tower schemes. Tower schemes are reduced schemes that are a finite union of linear varieties whose support set is a suitable finite subset of Z + c called tower set. We prove that the tower schemes are arithmetically Cohen–Macaulay and we compute their Hilbert function in terms of their support. Afterwards, since even in codimension 2 not every arithmetically Cohen–Macaulay squarefree monomial ideal is the ideal of a tower scheme, we slightly extend this notion by defining generalized tower schemes …

MonomialTower setBetti sequence; Cohen-Macaulay; Tower setCommutative Algebra (math.AC)Combinatoricssymbols.namesake13H10 14N20 13D40FOS: MathematicsMathematicsmonomial idealsHilbert series and Hilbert polynomialAlgebra and Number TheoryIdeal (set theory)Mathematics::Commutative AlgebraCohen–Macaulay propertyMonomial idealCodimensionBetti sequenceMathematics - Commutative AlgebraTower (mathematics)Arithmetically Cohen-MacaulayCohen-MacaulayPrimary decompositionSettore MAT/02 - AlgebraScheme (mathematics)Hilbert functionsymbolsSettore MAT/03 - GeometriaCohen–Macaulay property monomial ideals Hilbert function.
researchProduct

Splittings of Toric Ideals

2019

Let $I \subseteq R = \mathbb{K}[x_1,\ldots,x_n]$ be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal $I$ can be "split" into the sum of two smaller toric ideals. For a general toric ideal $I$, we give a sufficient condition for this splitting in terms of the integer matrix that defines $I$. When $I = I_G$ is the toric ideal of a finite simple graph $G$, we give additional splittings of $I_G$ related to subgraphs of $G$. When there exists a splitting $I = I_1+I_2$ of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of $I$ in terms of the (multi-)graded Betti numbers of $I_1$ and $I_2$.

Binomial (polynomial)Betti numberPrime idealExistential quantificationCommutative Algebra (math.AC)01 natural sciencesCombinatoricsInteger matrixMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsGraded Betti numbers; Graphs; Toric idealsMathematics - Combinatorics0101 mathematicsMathematics::Symplectic GeometryMathematicsAlgebra and Number TheorySimple graphIdeal (set theory)Mathematics::Commutative AlgebraGraded Betti numbers Graphs Toric ideals010102 general mathematicsMathematics::Rings and Algebras16. Peace & justiceMathematics - Commutative AlgebraSettore MAT/02 - AlgebraToric ideals13D02 13P10 14M25 05E40Settore MAT/03 - Geometria010307 mathematical physicsCombinatorics (math.CO)Graded Betti numbersGraphs
researchProduct

On the Betti numbers of three fat points in P1 × P1

2019

In these notes we introduce a numerical function which allows us to describe explicitly (and nonrecursively) the Betti numbers, and hence, the Hilbert function of a set Z of three fat points whose support is an almost complete intersection (ACI) in P1 × P1 . A nonrecursively formula for the Betti numbers and the Hilbert function of these configurations is hard to give even for the corresponding set of five points on a special support in P2 and we did not find any kind of this result in the literature. Moreover, we also give a criterion that allows us to characterize the Hilbert functions of these special set of fat points.

13F20Fat points Hilbert functions Multiprojective spaces13A15Fat pointsMathematics - Commutative Algebra13D40Mathematics - Algebraic GeometrySettore MAT/02 - AlgebraFat points; Hilbert functions; Multiprojective spacesMultiprojective spacesSettore MAT/03 - GeometriaMathematics - Algebraic Geometry; Mathematics - Algebraic Geometry; Mathematics - Commutative Algebra; 13F20 13A15 13D40 14M0514M05Hilbert functions
researchProduct

A numerical property of Hilbert functions and lex segment ideals

2017

We introduce the fractal expansions, sequences of integers associated to a number. We show that these sequences characterize the Osequences and encode some information about lex segment ideals. Moreover, we introduce numerical functions called fractal functions, and we use them to solve the open problem of the classification of the Hilbert functions of any bigraded algebra.

13F20 13A15 13D40Settore MAT/02 - AlgebraBigraded algebraLex segment idealMathematics::Commutative AlgebraHilbert functionFOS: MathematicsSettore MAT/03 - GeometriaCommutative Algebra (math.AC)Mathematics - Commutative AlgebraBigraded algebra Hilbert function Lex segment idealBigraded algebra; Hilbert function; Lex segment ideal
researchProduct