0000000000730707

AUTHOR

Athanasios G. Papavassiliou

Polycystin-1 downregulation induces ERK-dependent mTOR pathway activation in a cellular model of psoriasis

Psoriatic plaques tend to localize to the knees and elbows, areas that are particularly subject to mechanical stress resulting from bending and friction. Moreover, plaques often develop at sites of mechanical trauma or injury (Koebner phenomenon). Nevertheless, mechanotransduction has never been linked to psoriasis. Polycystins (polycystin-1, PC1; polycystin-2, PC2) are mechanosensitive molecules that function as key regulators of cellular mechanosensitivity and mechanotransduction. The aim of this in vitro study was to investigate the role of polycystins in the development of psoriasis. We showed that PC1 knockdown in HaCaT cells led to an elevated mRNA expression of psoriasis-related biom…

research product

Selective uptake and degradation of c-Fos and v-Fos by rat liver lysosomes

AbstractThe transcription factor c-Fos is a short-lived protein and calpains and ubiquitin-dependent systems have been proposed to be involved in its degradation. In this report, we consider a lysosomal degradation pathway for c-Fos. Using a cell-free assay, we have found that freshly isolated lysosomes can take up and degrade c-Fos with high efficiency. v-Fos, the oncogenic counterpart of c-Fos, can also be taken up by lysosomes, yet the amount of incorporated protein is much lower. c-Fos uptake is independent of its phosphorylation state but it appears to be regulated by dimerization with differentially phosphorylated forms of c-Jun, while v-Fos escapes this regulation. Moreover, we show …

research product