Stability of radial head and neck fractures: a biomechanical study of six fixation constructs with consideration of three locking plates.
Open reduction and internal fixation of radial neck fractures can lead to secondary loss of reduction and nonunion due to insufficient stability. Nevertheless, there are only a few biomechanical studies about the stability achieved by different osteosynthesis constructs.Forty-eight formalin-fixed, human proximal radii were divided into 6 groups according to their bone density (measured by dual-energy x-ray absorptiometry). A 2.7-mm gap osteotomy was performed to simulate an unstable radial neck fracture, which was fixed with 3 nonlocking implants: a 2.4-mm T plate, a 2.4-mm blade plate, and 2.0-mm crossed screws, and 3 locking plates: a 2.0-mm LCP T plate, a 2.0-mm 6x2 grid plate, and a 2.0…