0000000000731421
AUTHOR
Jukka Nieminen
Applying Wavelet Packet Decomposition and One-Class Support Vector Machine on Vehicle Acceleration Traces for Road Anomaly Detection
Road condition monitoring through real-time intelligent systems has become more and more significant due to heavy road transportation. Road conditions can be roughly divided into normal and anomaly segments. The number of former should be much larger than the latter for a useable road. Based on the nature of road condition monitoring, anomaly detection is applied, especially for pothole detection in this study, using accelerometer data of a riding car. Accelerometer data were first labeled and segmented, after which features were extracted by wavelet packet decomposition. A classification model was built using one-class support vector machine. For the classifier, the data of some normal seg…
Anomaly detection using one-class SVM with wavelet packet decomposition
Anomaly detection has become a popular research topic in the field of machine learning. Support vector machine is one anomaly detection technique and it is coming one the most widely used. In this research, anomaly detection is applied to road condition monitoring, especially pothole detection, using accelerometer data. The proposed concept includes data preprocessing, feature extraction, feature selection and classification. Accelerometer data was first filtered and segmented, after which features were extracted with frequency- and time-domain functions, with genetic programming and with wavelet packet decomposition. A classification model was built using support vector machine and the cal…