0000000000731502
AUTHOR
Daniil M. Ivanov
Studies of Nature of Uncommon Bifurcated I–I···(I–M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals
Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal–iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed …
The H2C(X)–X•••X– (X = Cl, Br) Halogen Bonding of Dihalomethanes
The dihalomethane–halide H2C(X)–X···X– (X = Cl, Br) halogen bonding was detected in a series of the cis-[PdX(CNCy){C(NHCy)═NHC6H2Me2NH2}]X•CH2X2 (X = Cl, Br) associates by single-crystal XRD followed by DFT calculations. Although ESP calculations demonstrated that the σ-hole of dichloromethane is the smallest among all halomethane solvents (the maximum electrostatic potential is only 2.6 kcal/mol), the theoretical DFT calculations followed by Bader’s QTAIM analysis (M06/DZP-DKH level of theory) confirmed the H2C(X)–X···X– halogen bond in both the solid-state and gas-phase optimized geometries. The estimated bonding energy in H2C(X)–X···X– is in the 1.9–2.8 kcal/mol range. peerReviewed
Classics Meet Classics: Theoretical and Experimental Studies of Halogen Bonding in Adducts of Platinum(II) 1,5-Cyclooctadiene Halide Complexes with Diiodine, Iodoform, and 1,4-Diiodotetrafluorobenzene
Complexes of PtX2COD (X = Cl, Br, I; COD = 1,5-cyclooctadiene) were cocrystallized with classical halogen-bond donors (CHI3, I2, and 1,4-diiodotetrafluorobenzene (FIB)), resulting in noncovalently ...
A family of heterotetrameric clusters of chloride species and halomethanes held by two halogen and two hydrogen bonds
Two previously reported 1,3,5,7,9-pentaazanona-1,3,6,8-tetraenate (PANT) chloride platinum(II) complexes [PtCl{HNC(R)NCN[C(Ph)C(Ph)]CNC(R)NH}] (R = tBu 1, Ph 2) form solvates with halomethanes 1·1¼CH2Cl2, 1·1⅖CH2Br2, and 2·CHCl3. All these species feature novel complex-solvent heterotetrameric clusters, where the structural units are linked simultaneously by two C–X⋯Cl–Pt (X = Cl, Br) halogen and two C–H⋯Cl–Pt hydrogen bonds. The geometric parameters of these weak interactions were determined using single-crystal XRD, and the natures of the XBs and HBs in the clusters were studied for the isolated model systems (1)2·(CH2Cl2)2, (1)2·(CH2Br2)2, and (2)2·(CHCl3)2 using DFT calculations and Bad…
The H2C(X)–X•••X– (X = Cl, Br) Halogen Bonding of Dihalomethanes
The dihalomethane–halide H2C(X)–X···X– (X = Cl, Br) halogen bonding was detected in a series of the cis-[PdX(CNCy){C(NHCy)═NHC6H2Me2NH2}]X•CH2X2 (X = Cl, Br) associates by single-crystal XRD followed by DFT calculations. Although ESP calculations demonstrated that the σ-hole of dichloromethane is the smallest among all halomethane solvents (the maximum electrostatic potential is only 2.6 kcal/mol), the theoretical DFT calculations followed by Bader’s QTAIM analysis (M06/DZP-DKH level of theory) confirmed the H2C(X)–X···X– halogen bond in both the solid-state and gas-phase optimized geometries. The estimated bonding energy in H2C(X)–X···X– is in the 1.9–2.8 kcal/mol range.
CCDC 2054859: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 1519122: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov|2016|CSD Communication|||
CCDC 2031113: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2031119: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 1519125: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov|2016|CSD Communication|||
CCDC 2054860: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 2031118: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2031114: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 1456509: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Alexander S. Novikov, Galina L. Starova, Matti Haukka, Vadim Yu. Kukushkin|2016|CrystEngComm|18|5278|doi:10.1039/C6CE01179A
CCDC 2054861: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 1470271: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Alexander S. Novikov, Galina L. Starova, Matti Haukka, Vadim Yu. Kukushkin|2016|CrystEngComm|18|5278|doi:10.1039/C6CE01179A
CCDC 2031117: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 1456075: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Alexander S. Novikov, Galina L. Starova, Matti Haukka, Vadim Yu. Kukushkin|2016|CrystEngComm|18|5278|doi:10.1039/C6CE01179A
CCDC 1517184: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Mikhail A. Kinzhalov, Alexander S. Novikov, Ivan V. Ananyev, Anna A. Romanova, Vadim P. Boyarskiy, Matti Haukka, Vadim Yu. Kukushkin|2017|Cryst.Growth Des.|17|1353|doi:10.1021/acs.cgd.6b01754
CCDC 2031115: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 1509734: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Mikhail A. Kinzhalov, Alexander S. Novikov, Ivan V. Ananyev, Anna A. Romanova, Vadim P. Boyarskiy, Matti Haukka, Vadim Yu. Kukushkin|2017|Cryst.Growth Des.|17|1353|doi:10.1021/acs.cgd.6b01754
CCDC 2031116: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314
CCDC 2054862: Experimental Crystal Structure Determination
Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591
CCDC 1519132: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov|2016|CSD Communication|||