0000000000732486

AUTHOR

Moona Huttunen

Echovirus 1 internalization negatively regulates epidermal growth factor receptor downregulation

We have demonstrated previously that the human picornavirus Echovirus 1 (EV1) triggers an infectious internalization pathway that follows closely, but seems to stay separate, from the epidermal growth factor receptor (EGFR) pathway triggered by epidermal growth factor (EGF). Here, we confirmed by using live and confocal microscopy that EGFR and EV1 vesicles are following intimately each other but are distinct entities with different degradation kinetics. We show here that despite being sorted to different pathways and located in distinct endosomes, EV1 inhibits EGFR downregulation. Simultaneous treatment with EV1 and EGF led to an accumulation of EGFR in cytoplasmic endosomes, which was evi…

research product

Enterovirus-induced non-acidic entry pathway and its relation to the epidermal growth factor receptor pathway

research product

Coxsackievirus A9 Infects Cells via Nonacidic Multivesicular Bodies

ABSTRACT Coxsackievirus A9 (CVA9) is a member of the human enterovirus B species in the Enterovirus genus of the family Picornaviridae . According to earlier studies, CVA9 binds to αVβ3 and αVβ6 integrins on the cell surface and utilizes β2-microglobulin, dynamin, and Arf6 for internalization. However, the structures utilized by the virus for internalization and uncoating are less well understood. We show here, based on electron microscopy, that CVA9 is found in multivesicular structures 2 h postinfection (p.i.). A neutral red labeling assay revealed that uncoating occurs mainly around 2 h p.i., while double-stranded RNA is found in the cytoplasm after 3 h p.i. The biogenesis of multivesicu…

research product

Infectious Entry Pathway of Enterovirus B Species

Enterovirus B species (EV-B) are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1), actin, Na/H exchanger, phospholipace C (PLC) and protein kinase Cα (PKCα). Another…

research product

Serological Follow-Up Study Indicates High Seasonal Coronavirus Infection and Reinfection Rates in Early Childhood

Seasonal human coronaviruses (HCoVs) cause respiratory infections, especially in children. Currently, the knowledge on early childhood seasonal coronavirus infections and the duration of antibody levels following the first infections is limited. Here we analyzed serological follow-up samples to estimate the rate of primary infection and reinfection(s) caused by seasonal coronaviruses in early childhood. Serum specimens were collected from 140 children at ages of 13, 24, and 36 months (1, 2, and 3 years), and IgG antibody levels against recombinant HCoV nucleoproteins (N) were measured by enzyme immunoassay (EIA). Altogether, 84% (118/140) of the children were seropositive for at least one s…

research product

Cell Susceptibility to Baculovirus Transduction and Echovirus Infection Is Modified by Protein Kinase C Phosphorylation and Vimentin Organization

ABSTRACT Some cell types are more susceptible to viral gene transfer or virus infection than others, irrespective of the number of viral receptors or virus binding efficacy on their surfaces. In order to characterize the cell-line-specific features contributing to efficient virus entry, we studied two cell lines (Ea.hy926 and MG-63) that are nearly nonpermissive to insect-specific baculovirus (BV) and the human enterovirus echovirus 1 (EV1) and compared their characteristics with those of a highly permissive (HepG2) cell line. All the cell lines contained high levels of viral receptors on their surfaces, and virus binding was shown to be efficient. However, in nonpermissive cells, BV and it…

research product

Echovirus 1 internalization negatively regulates epidermal growth factor receptor downregulation

We have demonstrated previously that the human picornavirus Echovirus 1 (EV1) triggers an infectious internalization pathway that follows closely, but seems to stay separate, from the epidermal growth factor receptor (EGFR) pathway triggered by epidermal growth factor (EGF). Here, we confirmed by using live and confocal microscopy that EGFR and EV1 vesicles are following intimately each other but are distinct entities with different degradation kinetics. We show here that despite being sorted to different pathways and located in distinct endosomes, EV1 inhibits EGFR downregulation. Simultaneous treatment with EV1 and EGF led to an accumulation of EGFR in cytoplasmic endosomes, which was evi…

research product