0000000000732882

AUTHOR

Evangelos Theocharous

Laboratory calibration and field measurement of land surface temperature and emissivity using thermal infrared multiband radiometers

Accurate ground measurements of land surface temperature (LST) are necessary for validating satellite LST products. In order to provide reliable data, ground radiometers must be calibrated with reference to an international standard, and radiometric temperatures must be corrected for land surface emissivity. As opposed to water, land surface emissivity is not usually known for many ground covers, so an emissivity value has to be assumed, assigned from spectral emissivity libraries or measured for each land cover and spectral band considered. The aim of this study is to show the laboratory calibration and the methodology for simultaneous field measurements of LST and emissivity employed in t…

research product

The 2016 CEOS Infrared Radiometer Comparison: Part II: Laboratory Comparison of Radiation Thermometers

AbstractTo ensure confidence, measurements carried out by imaging radiometers mounted on satellites require robust validation using “fiducial quality” measurements of the same in situ parameter. For surface temperature measurements this is optimally carried out by radiometers measuring radiation emitted in the infrared region of the spectrum, collocated to that of a satellite overpass. For ocean surface temperatures the radiometers are usually on board ships to sample large areas but for land and ice they are typically deployed at defined geographical sites. It is of course critical that the validation measurements and associated instrumentation are internationally consistent and traceable …

research product