0000000000733093

AUTHOR

T. V. Vasylyshyn

showing 2 related works from this author

The algebra of symmetric analytic functions on L∞

2017

We consider the algebra of holomorphic functions on L∞ that are symmetric, i.e. that are invariant under composition of the variable with any measure-preserving bijection of [0, 1]. Its spectrum is identified with the collection of scalar sequences such that is bounded and turns to be separable. All this follows from our main result that the subalgebra of symmetric polynomials on L∞ has a natural algebraic basis.

Power sum symmetric polynomialTriple systemGeneral Mathematics010102 general mathematicsSubalgebraStanley symmetric functionComplete homogeneous symmetric polynomial01 natural sciences010101 applied mathematicsAlgebraSymmetric polynomialComputingMethodologies_DOCUMENTANDTEXTPROCESSINGElementary symmetric polynomial0101 mathematicsRing of symmetric functionsMathematicsProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Symmetric and finitely symmetric polynomials on the spaces ℓ∞ and L∞[0,+∞)

2018

We consider on the space l∞ polynomials that are invariant regarding permutations of the sequence variable or regarding finite permutations. Accordingly, they are trivial or factor through c0. The analogous study, with analogous results, is carried out on L∞[0,+∞), replacing the permutations of N by measurable bijections of [0,+∞) that preserve the Lebesgue measure.

010101 applied mathematicsCombinatoricsMathematics::CombinatoricsLebesgue measureSymmetric polynomialGeneral Mathematics010102 general mathematics0101 mathematicsInvariant (mathematics)Bijection injection and surjection01 natural sciencesMathematicsMathematische Nachrichten
researchProduct