0000000000733315

AUTHOR

P. Michael Iuvone

Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells.

The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy-one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (A…

research product

Rhythmic Regulation of Photoreceptor and RPE Genes Important for Vision and Genetically Associated With Severe Retinal Diseases.

Purpose The aim of the present study was to identify candidate genes for mediating daily adjustment of vision. Methods Genes important for vision and genetically associated with severe retinal diseases were tested for 24-hour rhythms in transcript levels in neuronal retina, microdissected photoreceptors, photoreceptor-related pinealocytes, and retinal pigment epithelium-choroid (RPE-choroid) complex by using quantitative PCR. Results Photoreceptors of wildtype mice display circadian clock-dependent regulation of visual arrestins (Arr1, Arr4) and the visual cycle gene Rdh12, whereas cells of the RPE-choroid exhibit light-dependent regulation of the visual cycle key genes Lrat, Rpe65, and Rdh…

research product

Pgc-1α and Nr4a1 Are Target Genes of Circadian Melatonin and Dopamine Release in Murine Retina

Purpose The neurohormones melatonin and dopamine mediate clock-dependent/circadian regulation of inner retinal neurons and photoreceptor cells and in this way promote their functional adaptation to time of day and their survival. To fulfill this function they act on melatonin receptor type 1 (MT1 receptors) and dopamine D4 receptors (D4 receptors), respectively. The aim of the present study was to screen transcriptional regulators important for retinal physiology and/or pathology (Dbp, Egr-1, Fos, Nr1d1, Nr2e3, Nr4a1, Pgc-1α, Rorβ) for circadian regulation and dependence on melatonin signaling/MT1 receptors or dopamine signaling/D4 receptors. Methods This was done by gene profiling using qu…

research product