0000000000733339
AUTHOR
Jdr Jens Harting
Slip Flow Over Structured Surfaces with Entrapped Microbubbles
On hydrophobic surfaces, roughness may lead to a transition to a superhydrophobic state, where gas bubbles at the surface can have a strong impact on a detected slip. We present two-phase lattice Boltzmann simulations of a Couette flow over structured surfaces with attached gas bubbles. Even though the bubbles add slippery surfaces to the channel, they can cause negative slip to appear due to the increased roughness. The simulation method used allows the bubbles to deform due to viscous stresses. We find a decrease of the detected slip with increasing shear rate which is in contrast to some recent experimental results implicating that bubble deformation cannot account for these experiments.…
Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels
In this contribution we review recent efforts on investigations of the effect of (apparent) boundary slip by utilizing lattice Boltzmann simulations. We demonstrate the applicability of the method to treat fundamental questions in microfluidics by investigating fluid flow in hydrophobic and rough microchannels as well as over surfaces covered by nano- or microscale gas bubbles.