0000000000735394

AUTHOR

Ira Tabas

MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis

Atherothrombotic vascular disease is often triggered by a distinct type of atherosclerotic lesion that displays features of impaired inflammation resolution, notably a necrotic core and thinning of a protective fibrous cap that overlies the core. A key cause of plaque necrosis is defective clearance of apoptotic cells, or efferocytosis, by lesional macrophages, but the mechanisms underlying defective efferocytosis and its possible links to impaired resolution in atherosclerosis are incompletely understood. Here, we provide evidence that proteolytic cleavage of the macrophage efferocytosis receptor c-Mer tyrosine kinase (MerTK) reduces efferocytosis and promotes plaque necrosis and defective…

research product

Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling

The endoplasmic reticulum (ER) unfolded protein response (UPR) restores equilibrium to the ER, but prolonged expression of the UPR effector CHOP (GADD153) is cytotoxic. We found that CHOP expression induced by ER stress was suppressed by prior engagement of toll-like receptor (TLR) 3 or 4 through a TRIF-dependent pathway. TLR engagement did not suppress phosphorylation of PERK or eIF-2alpha, which are upstream of CHOP, but phospho-eIF-2alpha failed to promote translation of the CHOP activator ATF4. In mice subjected to systemic ER stress, pretreatment with low dose lipopolysaccharide (LPS), a TLR4 ligand, suppressed CHOP expression and apoptosis in splenic macrophages, renal tubule cells an…

research product

Autophagy

Klionsky, Daniel J. et al.

research product

CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis

Atherosclerosis is the underlying etiology of cardiovascular disease, the leading cause of death worldwide. Atherosclerosis is a heterogeneous disease in which only a small fraction of lesions lead to heart attack, stroke, or sudden cardiac death. A distinct type of plaque containing large necrotic cores with thin fibrous caps often precipitates these acute events. Here, we show that Ca2+/calmodulin-dependent protein kinase gamma (CaMKII gamma) in macrophages plays a major role in the development of necrotic, thin-capped plaques. Macrophages in necrotic and symptomatic atherosclerotic plaques in humans as well as advanced atherosclerotic lesions in mice demonstrated activation of CaMKII. We…

research product

Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism.

Macrophages play key roles in obesity-associated pathophysiology, including inflammation, atherosclerosis, and cancer, and processes that affect the survival-death balance of macrophages may have an important impact on obesity-related diseases. Adipocytes and other cells secrete a protein called extracellular nicotinamide phosphoribosyltransferase (eNampt; also known as pre-B cell colony enhancing factor or visfatin), and plasma levels of eNampt increase in obesity. Herein we tested the hypothesis that eNampt could promote cell survival in macrophages subjected to endoplasmic reticulum (ER) stress, a process associated with obesity and obesity-associated diseases. We show that eNampt potent…

research product

An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques

Chronic unresolved inflammation plays a causal role in the development of advanced atherosclerosis, but the mechanisms that prevent resolution in atherosclerosis remain unclear. Here, we use targeted mass spectrometry to identify specialized pro-resolving lipid mediators (SPM) in histologically-defined stable and vulnerable regions of human carotid atherosclerotic plaques. The levels of SPMs, particularly resolvin D1 (RvD1), and the ratio of SPMs to pro-inflammatory leukotriene B4 (LTB4), are significantly decreased in the vulnerable regions. SPMs are also decreased in advanced plaques of fat-fed Ldlr−/− mice. Administration of RvD1 to these mice during plaque progression restores the RvD1:…

research product