0000000000735973

AUTHOR

T. Hickler

Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53)

Central to the development of Earth system models (ESMs) has been the coupling of previously separate model types, such as ocean, atmospheric, and vegetation models, to address interactive feedbacks between the system components. A modelling framework which combines a detailed representation of these components, including vegetation and other land surface processes, enables the study of land–atmosphere feedbacks under global climate change. Here we present the initial steps of coupling LPJ-GUESS, a dynamic global vegetation model, to the atmospheric chemistry-enabled atmosphere–ocean general circulation model EMAC. The LPJ-GUESS framework is based on ecophysiological processes, such as phot…

research product

Understanding the uncertainty in global forest carbon turnover

Abstract. The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on simplified assumptions of the turnover rates of biomass and soil carbon pools. In this study, the biomass carbon turnover times calculated by an ensemble of contemporary terrestrial biosphere models (TBMs) are analysed to assess their current capability to accurately estimate biomass carbon turnover times in forests and how these times a…

research product