0000000000736382
AUTHOR
Kai Zapp
The pion quasiparticle in the low-temperature phase of QCD
We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size $20\times 64^3$ at $T\approx 151$MeV and a lighter zero-temperature pion mass $m_{\pi} \approx 185$ MeV. Furthermore, we investigate the Gell-Mann--Oakes-Renner relation at finite temperature and the Dey-Eletsky-Ioffe mixing theorem at finite quark mass.
Static and non-static vector screening masses
Thermal screening masses of the conserved vector current are calculated both in a weak-coupling approach and in lattice QCD. The inverse of a screening mass can be understood as the length scale over which an external electric field is screened in a QCD medium. The comparison of screening masses both in the zero and non-zero Matsubara frequency sectors shows good agreement of the perturbative and the lattice results. Moreover, at $T\approx 508\mathrm{MeV}$ the lightest screening mass lies above the free result ($2\pi T$), in agreement with the $\mathcal{O}(g^2)$ weak-coupling prediction.