0000000000736458

AUTHOR

Olympia Simantiraki

showing 4 related works from this author

Depression Assessment by Fusing High and Low Level Features from Audio, Video, and Text

2016

International audience; Depression is a major cause of disability world-wide. The present paper reports on the results of our participation to the depression sub-challenge of the sixth Audio/Visual Emotion Challenge (AVEC 2016), which was designed to compare feature modalities ( audio, visual, interview transcript-based) in gender-based and gender-independent modes using a variety of classification algorithms. In our approach, both high and low level features were assessed in each modality. Audio features were extracted from the low-level descriptors provided by the challenge organizers. Several visual features were extracted and assessed including dynamic characteristics of facial elements…

Computer scienceSpeech recognitionPosterior probabilitymultimodal fusionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processing02 engineering and technology[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI][SPI]Engineering Sciences [physics]AVEC 2016Histogram0202 electrical engineering electronic engineering information engineeringFeature (machine learning)[ SPI ] Engineering Sciences [physics]Affective computingaffective computing[ INFO.INFO-AI ] Computer Science [cs]/Artificial Intelligence [cs.AI]speech processing[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Modality (human–computer interaction)[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph]pattern recognition020206 networking & telecommunicationsSpeech processingimage processingStatistical classificationdepression assessment13. Climate actionPattern recognition (psychology)020201 artificial intelligence & image processing
researchProduct

Stress Detection from Speech Using Spectral Slope Measurements

2018

Automatic detection of emotional stress is an active research domain, which has recently drawn increasing attention, mainly in the fields of computer science, linguistics, and medicine. In this study, stress is automatically detected by employing speech-derived features. Related studies utilize features such as overall intensity, MFCCs, Teager Energy Operator, and pitch. The present study proposes a novel set of features based on the spectral tilt of the glottal source and of the speech signal itself. The proposed features rely on the Probability Density Function of the estimated spectral slopes, and consist of the three most probable slopes from the glottal source, as well as the correspon…

Computer sciencebusiness.industry020206 networking & telecommunicationsProbability density functionPattern recognition02 engineering and technologyFundamental frequencySignalRandom forestEnergy operatorSpectral slopeClassifier (linguistics)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessWord (computer architecture)
researchProduct

Facial geometry and speech analysis for depression detection.

2017

Depression is one of the most prevalent mental disorders, burdening many people world-wide. A system with the potential of serving as a decision support system is proposed, based on novel features extracted from facial expression geometry and speech, by interpreting non-verbal manifestations of depression. The proposed system has been tested both in gender independent and gender based modes, and with different fusion methods. The algorithms were evaluated for several combinations of parameters and classification schemes, on the dataset provided by the Audio/Visual Emotion Challenge of 2013 and 2014. The proposed framework achieved a precision of 94.8% for detecting persons achieving high sc…

Decision support systemFacial expressionDepressive DisorderDepressionSpeech recognition05 social sciencesNearest neighbourClassification scheme02 engineering and technologyFacial geometryBinary operationFace0502 economics and business0202 electrical engineering electronic engineering information engineeringDecision fusionHumansSpeech020201 artificial intelligence & image processingPsychologyClassifier (UML)050203 business & managementAlgorithmsAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct

Glottal Source Features for Automatic Speech-Based Depression Assessment

2017

Depression is one of the most prominent mental disorders, with an increasing rate that makes it the fourth cause of disability worldwide. The field of automated depression assessment has emerged to aid clinicians in the form of a decision support system. Such a system could assist as a pre-screening tool, or even for monitoring high risk populations. Related work most commonly involves multimodal approaches, typically combining audio and visual signals to identify depression presence and/or severity. The current study explores categorical assessment of depression using audio features alone. Specifically, since depression-related vocal characteristics impact the glottal source signal, we exa…

machine learningComputer scienceSpeech recognitionglottal source0202 electrical engineering electronic engineering information engineeringAutomatic speechPhase Distortion Deviation020206 networking & telecommunications020201 artificial intelligence & image processing02 engineering and technologybi-nary classificationDepression (differential diagnoses)Interspeech 2017
researchProduct