0000000000736873

AUTHOR

Tobias Böhmer

Role of the M3 Muscarinic Acetylcholine Receptor Subtype in Murine Ophthalmic Arteries After Endothelial Removal

We tested the hypothesis that the M3 muscarinic acetylcholine receptor subtype mediates cholinergic responses in murine ophthalmic arteries after endothelial removal.Muscarinic receptor gene expression was determined in ophthalmic arteries with intact and with removed endothelium using real-time PCR. To examine the role of the M3 receptor in mediating vascular responses, ophthalmic arteries from M3 receptor-deficient mice (M3R(-/-)) and respective wild-type controls were studied in vitro. Functional studies were performed in nonpreconstricted arteries with either intact or removed endothelium using video microscopy.In endothelium-intact ophthalmic arteries, mRNA for all five muscarinic rece…

research product

The Role of Adrenoceptors in the Retina

The retina is a part of the central nervous system, a thin multilayer with neuronal lamination, responsible for detecting, preprocessing, and sending visual information to the brain. Many retinal diseases are characterized by hemodynamic perturbations and neurodegeneration leading to vision loss and reduced quality of life. Since catecholamines and respective bindings sites have been characterized in the retina, we systematically reviewed the literature with regard to retinal expression, distribution and function of alpha1 (α1)-, alpha2 (α2)-, and beta (β)-adrenoceptors (ARs). Moreover, we discuss the role of the individual adrenoceptors as targets for the treatment of retinal diseases.

research product

The α1B-adrenoceptor subtype mediates adrenergic vasoconstriction in mouse retinal arterioles with damaged endothelium

Background and Purpose The α1-adrenoceptor family plays a critical role in regulating ocular perfusion by mediating responses to catecholamines. The purpose of the present study was to determine the contribution of individual α1-adrenoceptor subtypes to adrenergic vasoconstriction of retinal arterioles using gene-targeted mice deficient in one of the three adrenoceptor subtypes (α1A-AR−/−, α1B-AR−/− and α1D-AR−/− respectively). Experimental Approach Using real-time PCR, mRNA expression for individual α1-adrenoceptor subtypes was determined in murine retinal arterioles. To assess the functional relevance of the three α1-adrenoceptor subtypes for mediating vascular responses, retinal vascular…

research product