High-temperature series analysis of the p-state Potts glass model on d-dimensional hypercubic lattices
We analyze recently extended high-temperature series expansions for the “Edwards-Anderson” spin-glass susceptibility of the p-state Potts glass model on d-dimensional hypercubic lattices for the case of a symmetric bimodal distribution of ferro- and antiferromagnetic nearest-neighbor couplings \(\). In these star-graph expansions up to order 22 in the inverse temperature \(\), the number of Potts states p and the dimension d are kept as free parameters which can take any value. By applying several series analysis techniques to the new series expansions, this enabled us to determine the critical coupling Kc and the critical exponent \(\) of the spin-glass susceptibility in a large region of …