0000000000740598
AUTHOR
Elmar Bittner
Numerical test of finite-size scaling predictions for the droplet condensation-evaporation transition
We numerically study the finite-size droplet condensation-evaporation transition in two dimensions. We consider and compare two orthogonal approaches, namely at fixed temperature and at fixed density, making use of parallel multicanonical simulations. The equivalence between Ising model and lattice gas allows us to compare to analytical predictions. We recover the known background density (at fixed temperature) and transition temperature (at fixed density) in the thermodynamic limit and compare our finite-size deviations to the predicted leading-order finite-size corrections.
Z2-Regge versus standard Regge calculus in two dimensions
We consider two versions of quantum Regge calculus: the standard Regge calculus where the quadratic link lengths of the simplicial manifold vary continuously and the ${Z}_{2}$ Regge model where they are restricted to two possible values. The goal is to determine whether the computationally more easily accessible ${Z}_{2}$ model still retains the universal characteristics of standard Regge theory in two dimensions. In order to compare observables such as the average curvature or Liouville field susceptibility, we use in both models the same functional integration measure, which is chosen to render the ${Z}_{2}$ Regge model particularly simple. Expectation values are computed numerically and …
Standard and Z2-Regge theory in two dimensions
Abstract We qualitatively compare two versions of quantum Regge calculus by means of Monte Carlo simulations. In Standard Regge Calculus the quadratic link lengths of the triangulation vary continuously, whereas in the Z2-Regge Model they are restricted to two possible values. The goal is to determine whether the computationally more easily accessible Z2 model retains the characteristics of standard Regge theory.