Momentum distributions of cosmic relics: Improved analysis
We solve coupled momentum-dependent Boltzmann equations for the phase space distribution of cosmic relic particles, without resorting to approximations of assuming kinetic equilibrium or neglecting backscattering or elastic interactions. Our method is amendable to precision numerical computations. To test it, we consider two benchmark models where the momentum dependence of dark matter distribution function is potentially important: a real singlet scalar extension near the Higgs resonance and a sterile neutrino dark matter model with a singlet scalar mediator. The singlet scalar example shows that the kinetic equilibrium may hold surprisingly well even near sharp resonances. However, the in…
Precision calculations of dark matter relic abundance
The dark matter annihilation channels sometimes involve sharp resonances. In such cases the usual momentum averaged approximations for computing the DM abundance may not be accurate. We develop an easily accessible momentum dependent framework for computing the DM abundance accurately and efficiently near such features. We apply the method to the case of a singlet scalar dark matter $s$ interacting with SM through higgs portal $\lambda_{\rm hs}s^2 h^2$ and compare the results with different momentum averaged methods. The accuracy of the latter depend strongly on the strength of the elastic interactions and corrections are large if WIMP has negligible interactions beyond the main annihilatio…