0000000000740797
AUTHOR
Evandro M. Alexandrino
Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol-Modified Nanocarriers.
Nanocarriers are a platform for modern drug delivery. In contact with blood, proteins adsorb to nanocarriers, altering their behavior in vivo. To reduce unspecific protein adsorption and unspecific cellular uptake, nanocarriers are modified with hydrophilic polymers like poly(ethylene glycol) (PEG). However, with PEG the attachment of further functional structures such as targeting units is limited. A method to introduce multifunctionality via polyglycerol (PG) while maintaining the hydrophilicity of PEG is introduced. Different amounts of negatively charged phosphonate groups (up to 29 mol%) are attached to the multifunctional PGs (Mn 2-4 kg mol-1 , Ð < 1.36) by post-modification. PGs are …
Poly(phosphonate)s via Olefin Metathesis: Adjusting Hydrophobicity and Morphology
Olefin metathesis step-growth (acyclic diene metathesis (ADMET)) and chain-growth (ring-opening metathesis) polymerization was used to prepare linear poly(phosphonate)s with variable hydrophilicity. The first phosphonate monomer, i.e., di(undec-10-en-1-yl) methylphosphonate, for ADMET polymerization was developed, and potentially degradable and biocompatible, unsaturated poly(phosphonate)s were prepared with molecular weights up to 23 000 g mol–1 with molecular weight dispersities Đ < 2. These polymers were studied with respect to their interaction with a calcium phosphate bone substitute material from an aqueous nanoparticle dispersion that was prepared by a solvent evaporation miniemulsio…