0000000000741183

AUTHOR

T. Myrick

showing 2 related works from this author

Magnetic Properties Experiments on the Mars Exploration Rover Spirit at Gusev Crater

2004

The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars—and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of ∼2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit.

Geologic SedimentsMineralsMultidisciplinaryExtraterrestrial EnvironmentMagnetic mineralsAtmosphereIronSpinelMarsWaterMaghemiteMineralogyOxidesMars Exploration ProgramAtmosphere of Marsengineering.materialFerrosoferric OxideMagneticschemistry.chemical_compoundImpact craterchemistryFerrimagnetismengineeringGeologyMagnetite
researchProduct

Search for magnetic minerals in Martian rocks: Overview of the Rock Abrasion Tool (RAT) magnet investigation on Spirit and Opportunity

2008

[1] The Rock Abrasion Tool (RAT) on board the Mars Exploration Rovers (MER) is a grinding tool designed to remove dust coatings and/or weathering rinds from rocks and expose fresh rock material. Four magnets of different strengths that are built into the structure of the RAT have been attracting substantial amounts of magnetic material during RAT activities from rocks throughout both rover missions. The RAT magnet experiment as performed on Spirit demonstrates the presence of a strongly ferrimagnetic phase in Gusev crater rocks, which based on Mossbauer and visible/near-infrared reflectance spectra is interpreted as magnetite. The amount of abraded rock material adhering to the magnets vari…

MartianAtmospheric ScienceEcologyPaleontologySoil ScienceMineralogyForestryWeatheringMars Exploration ProgramAquatic ScienceOceanographyAbrasion (geology)chemistry.chemical_compoundMagnetizationGeophysicschemistryImpact craterSpace and Planetary ScienceGeochemistry and PetrologyFerrimagnetismEarth and Planetary Sciences (miscellaneous)GeologyEarth-Surface ProcessesWater Science and TechnologyMagnetiteJournal of Geophysical Research
researchProduct