0000000000741413

AUTHOR

M. -C. Piro

showing 4 related works from this author

Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

2018

In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ([InlineMediaObject not available: see fulltext.]), thoron ([InlineMediaObject not available: see fulltext.]) and krypton ([InlineMediaObject not available: see fulltext.]). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of ∼4years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentr…

data analysis methodPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMPFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsRadonSciences de l'ingénieur01 natural sciencesIonNuclear physicsradon: nuclideXENONlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)nuclidebackground: radioactivitybackground: suppressionkryptonPhysicsRadionuclidePhysique010308 nuclear & particles physicsKryptonInstrumentation and Detectors (physics.ins-det)Alpha particleAstronomieDark Matter direct search experimentrespiratory tract diseasesRadon DaughtersBackgroundchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100

2017

We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe…

Physics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectors[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonRecoilWIMP[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark MatterNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]nucleus: recoilPhysicsTime projection chamberAstrophysics::Instrumentation and Methods for AstrophysicsWIMP nucleon: cross sectionInstrumentation and Detectors (physics.ins-det)Excited stateWeakly interacting massive particlesTPCNucleonchannel cross section: measuredsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPchemistry.chemical_elementFOS: Physical sciencesInelastic scatteringspin: dependenceNuclear physicsstatistical analysis[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emission0103 physical sciencescross section: inelastic scattering[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsWIMP nucleon: inelastic scattering010308 nuclear & particles physicsS030DP2WIMP nucleus: interactionGran SassochemistryDirect Searchtime projection chamber: xenonHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

2017

We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,\sigma$, however no other more significant modulation is observed. The expected annual modulation of a dark matt…

Physics and Astronomy (all) XENON DARK MATTER MODULATION TPCPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterGeneral Physics and AstronomyFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Recoil0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPseudovectorInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)Coupling (probability)ModulationAstrophysics - Instrumentation and Methods for AstrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Search for two-neutrino double electron capture of $^{124}$Xe with XENON100

2017

Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}>6.5\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently bein…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsElectron captureenergy resolutionFOS: Physical scienceschemistry.chemical_elementelectron: captureElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesBayesianX-rayneutrinoXenon0103 physical sciencesSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physics[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear ExperimentPhysicsnucleus: decayTime projection chamberphotomultiplier010308 nuclear & particles physicsbackgroundInstrumentation and Detectors (physics.ins-det)dark matter: detectorAtomic shellsensitivitytime projection chamberGran SassoxenonchemistryNeutrinoAtomic physicsRadioactive decayexperimental results
researchProduct