0000000000741784
AUTHOR
K. Senthilnathan
Gap solitons and modulation instability in a dynamic Bragg grating with nonlinearity management
International audience; We investigate the occurrence of modulation instability in systems in which a dynamic Bragg grating consists of alternating positive and negative Kerr coefficients. The dependence of modulation instability gain spectra over the perturbation wavenumber and system parameters is portrayed near and at the edges of the photonic band gap structure. Further, we demonstrate the generation of traveling gap solitons near the photonic band gap structure through the modulation instability
Generation of self-induced-transparency gap solitons by modulational instability in uniformly doped fiber Bragg gratings
We consider the continuous-wave (cw) propagation through a fiber Bragg grating that is uniformly doped with two-level resonant atoms. Wave propagation is governed by a system of nonlinear coupled-mode Maxwell-Bloch (NLCM-MB) equations. We identify modulational instability (MI) conditions required for the generation of ultrashort pulses in both anomalous and normal dispersion regimes. From a detailed linear stability analysis, we find that the atomic detuning frequency has a strong influence on the MI. That is, the atomic detuning frequency induces nonconventional MI sidebands at the photonic band gap (PBG) edges and near the PBG edges. Especially in the normal dispersion regime, MI occurs w…