0000000000742679

AUTHOR

Rafael Garcés

showing 3 related works from this author

Four-wave mixing and vacuum squeezing in polariton microcavities

2017

In a recent paper [1] it has been shown how a bichromatic fast driving of optomechanical (optical domain) and superconducting circuit systems (microwave domain), operating in a limit where they present a non-linear Kerr-type interaction, can give rise to very strong vacuum squeezing. The driving with two close frequencies of a Kerr cavity changes the usual bistability bifurcation behaviour that takes place under monochromatic driving, into a degenerate four-wave mixing bifurcation, where a phase-bistable component starts oscillating spontaneously at a frequency that lies halfway between the two driving frequencies [2]. This resembles the physics of the optical parametric oscillator threshol…

Electromagnetic fieldPhysicsBistability02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesOptical bistabilityFour-wave mixingQuantum mechanics0103 physical sciencesOptical parametric oscillatorPolariton010306 general physics0210 nano-technologyBifurcationQuantum fluctuation
researchProduct

Floquet theory for temporal correlations and spectra in time-periodic open quantum systems: Application to squeezed parametric oscillation beyond the…

2021

Open quantum systems can display periodic dynamics at the classical level either due to external periodic modulations or to self-pulsing phenomena typically following a Hopf bifurcation. In both cases, the quantum fluctuations around classical solutions do not reach a quantum-statistical stationary state, which prevents adopting the simple and reliable methods used for stationary quantum systems. Here we put forward a general and efficient method to compute two-time correlations and corresponding spectral densities of time-periodic open quantum systems within the usual linearized (Gaussian) approximation for their dynamics. Using Floquet theory we show how the quantum Langevin equations for…

Floquet theoryPhysicsQuantum PhysicsTime periodicComputationParametric oscillationFOS: Physical sciencesFísicaÒpticaOptometria01 natural sciencesSpectral line010305 fluids & plasmasRange (mathematics)0103 physical sciencesRotating wave approximationVisióStatistical physicsQuantum Physics (quant-ph)010306 general physicsQuantum
researchProduct

Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits

2015

AbstractSqueezed light, displaying less fluctuation than vacuum in some observable, is key in the flourishing field of quantum technologies. Optical or microwave cavities containing a Kerr nonlinearity are known to potentially yield large levels of squeezing, which have been recently observed in optomechanics and nonlinear superconducting circuit platforms. Such Kerr-cavity squeezing however suffers from two fundamental drawbacks. First, optimal squeezing requires working close to turning points of a bistable cycle, which are highly unstable against noise thus rendering optimal squeezing inaccessible. Second, the light field has a macroscopic coherent component corresponding to the pump, ma…

SuperconductivityMultidisciplinaryField (physics)BistabilitySuperconducting circuitsComputer sciencePhysics::OpticsBioinformatics01 natural sciencesNoise (electronics)Article010305 fluids & plasmasÒptica quànticaQuantum technologyQuantum electrodynamics0103 physical sciences010306 general physicsMicrowaveOptomechanicsLight fieldSqueezed coherent state
researchProduct