Effects of the Genetic Depletion of Polysialyltransferases on the Structure and Connectivity of Interneurons in the Adult Prefrontal Cortex
Polysialic acid (polySia) is a complex sugar that in the nervous system appears mainly as a posttranslational modification of the neural cell adhesion molecule (NCAM). PolySia plays important roles during brain development, but also in its plasticity during adulthood. Two polysialyltransferases (polyST), ST8SIA2 and ST8SIA4, are involved in the synthesis and attachment of polySia. Both polyST are relevant for developmental migration of cortical interneurons and their establishment in the prefrontal cortex (PFC). In contrast, only ST8SIA4 appears to be important for the structural plasticity of a subpopulation of cortical interneurons in the adult. Interestingly, ST8SIA2 and NCAM are candida…
Divergent impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid expression in immature neurons and interneurons of the adult cerebral cortex.
Polysialic acid (PSA) is a negatively charged carbohydrate polymer, which confers antiadhesive properties to the neural cell adhesion molecule NCAM and facilitates cellular plasticity during brain development. In mice, PSA expression decreases drastically during the first postnatal weeks and it gets confined to immature neurons and regions displaying structural plasticity during adulthood. In the brain, PSA is exclusively synthesized by the two polysialyltransferases ST8SiaII and ST8SiaIV. To study their individual contribution to polysialylation in the adult, we analyzed PSA expression in mice deficient for either polysialyltransferase. Focusing on the cerebral cortex, our results indicate…